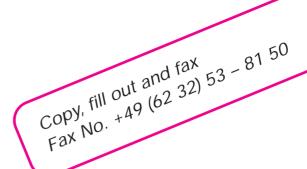
Overview Catalogue Contact Products Quick search for product <

Matching filters ...

Spin-on filters Filter elements **Elements for EDM** High-pressure filters In-line filters **Suction filters** Picolino Filters for two-way ventilation Gap-type and backflushing filters

... for every fluid

 For the filtration of fuels, lube and hydraulic oils Application: motors, gears, general machinery 	Page 4 Page 10
 For the filtration of fuels, lube and hydraulic oils, coolants and paints Application: motors, gears, general machinery 	Page 15
 For the filtration of oil and water based dielectrics Application: wire and cavity-sinking EDM machines 	Page 21
 For the filtration of lube oils and hydraulic fluids Application: general machinery, hydraulics 	Page 27
 For the filtration of fuels, lube oils and hydraulic fluids Application: motors, machines, plants, automotive hydraulics 	Page 37
 For the filtration of lube and hydraulic oils Application: hydraulic systems, gears 	Page 51
 For aeration and ventilation Application: gears, tanks for liquids 	Page 55
 For aeration and ventilation Application: gears, tanks for liquids 	Page 59
 For the filtration of fluids of high and low viscosity, such as water, polyhydric alcohols, isocyanate, cooling lubricants, processing emulsions and alkaline solutions, paints Application: general machinery, large-size engines, chemical industry, 	Page 63 Page 85


foaming machines, metal-cutting machinery, industrial washing installations,

cooling water systems, power stations, etc.

Configuring the size of filters for liquids

Fax to:

FILTERWERK
MANN+HUMMEL GMBH
Geschäftsbereich Industriefilter, Dept. IF-V1
67323 Spever, Germany

07323 Speyer, C	Definally	
☐ Please send u	s information on a filter for	liquids for the following application:
• Use/process:		
Liquid to be f	iltered (if known, indicate mai	nufacturer and name):
 Viscosity at _ 	°C:	• pH:
Nominal flow	rate:	Required service life:
 Contaminatio 	n (g/l or g/work piece):	
 Type of conta 	ımination:	
 Operating pre 	essure of installation:	Max. perm. working pressure:
Max. perm. d	ifferential pressure:	Max. perm.working temperature:
Type of impure	rities:	
Form of impu	rities: (i.g. swarf of various fo	rms):
Max. perm. p	article size on filtered fluid sic	de or filter rating:
 Optional filter 	controller from MANN+HUM	MEL: ☐ yes ☐ no
• Other:		
☐ Please submit	a proposal for the following	a services:
_		
	n at installation site	☐ Test installation
☐ Series of o		Assembly and start-up
☐ Product-on	ented training	☐ Inspection and maintenance agreement
Company		
Name .		
Department .		
Street		
Postal code/City .		
Country		
Telephone .		
Fax .		
o-mail·		

MANN micro-Top Spin-on filters for lube and hydraulic oils

MANN Spin-on filters are fine filters used for the filtration of lube and hydraulic oils as well as in engines, machines and installations.

The fineness of the MANN micro-Top filter elements (star-pleated paper) is in the µm range.

Design

The MANN micro-Top filter element is fixed into the housing. The inlet and outlet for the liquid to be filtered are located in the threaded cover. The spin-on filters are simply screwed on specially provided connections on engines and machines.

Operation

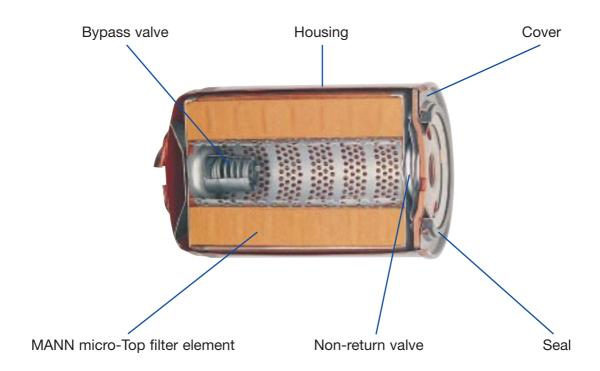
Spin-on filters are generally used as full-flow filters, i.e. they are installed in the circuit in a way ensuring that all the liquid to be cleaned passes through them every time it circulates.

Deposit of dirt particles on the paper element causes the flow resistance to increase.

When a certain differential pressure is reached (e.g. upon cold start or when the filtering element is clogged), a bypass valve in the filter opens, ensuring sufficient lubrication.

For the opening pressure of the bypass valve, please see the relevant table.

An optionally integrated non-returne valve prevents the running dry of the filter. In this way the operating pressure is reached quickly after starting the engine.

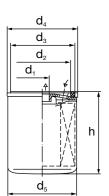

Maintenance

Usually, the maintenance frequency is determined by the engine or machine manufacturer. The maintenance work to be performed is limited to the replacement of the complete spin-on filter. The removal tool shown on page 9 helps in loosening the filter.

On the Spin-on filters suitable for pressures up to 14 bar (1.4 MPa), an integrated non-return valve prevents oil to flow out during the servicing.

Configuration

The stated values in the table are standard which – depending on the application – can be adjusted upwards. For further information please ask your sales engineer.

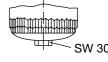

Technical data

Filter fineness:	12 µm 50 % fractional separation efficiency
	(single pass)
	30 µm 99 % fractional separation efficiency
	(single pass)
	Other filter fineness upon request
Nominal flow rate:	25 to 540 l/min.
Operating pressure:	14; 20; 25 or 35 bar (1.4; 2; 2.5 or 3.5 MPa)
Operating temperature:	Max. 120 °C
Bypass valve:	Opens at differential pressures of 0.8 to 2.5 /
	3.5 bar with or without non-return valve

Nominal pressure 14 bar (1.4 MPa)

Spin-on filters for this pressure range are used primarily for the filtration of lube oils. Applications for other liquids upon request.

- Opening pressure of bypass: 0.8 to 2.5 bar (80 to 250 kPa).
- With non-return valve.

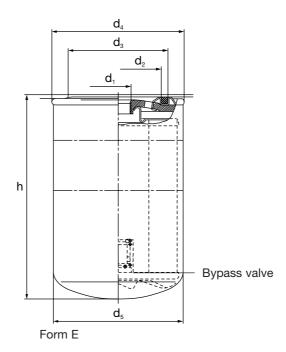

Form D

Form E

Filter mounting: metric thread

Part No.	Form	Nominal flow rate [l/min]	Г	Dimensions in mm and inches						return Ilve [KPa]		pass alve [KPa]
			d₁	d_1 d_2 d_3 d_4 d_5 h								
W 712/15	D	15	M 18x1.5	62	71	80	76	94	0.12	12	1.0	100
W 815	D	20	M 20x1.5	62	71	90	86	89	0.12	12	1.5	150
W 920/25	В	20	M 20x1.5	62	71	96	93	95	0.12	12	0.8	80

Filter mounting: unified thread in inches

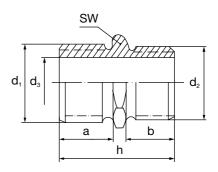

riitei illouliti													
Part No.	Form	Nominal	Dimension	ns in n	nm and	d inche	es		Non-return			oass	Short desi-
		flow rate								lve	valve		gnation
		[l/min]		ı	ı	ı	I	I	[bar]	[KPa]	[bar]	[KPa]	to DIN
			d ₁	d ₂	d₃	d ₄	d₅	h					ISO 71457
W 712/1	С	12	3/4 – 16 UNF	62	71	80	76	79	0.12	12	_	-	-
W 712/4	С	15	3/4 - 16 UNF	62	71	80	76	93	0.12	12	2.5	250	A 0.4
W 719/4	С	20	3/4 - 16 UNF	62	71	80	76	123	0.12	12	2.5	250	_
W 920	Α	25	3/4 - 16 UNF	62	71	96	93	95	0.12	12	2.5	250	B 0.5
W 920/7	В	25	3/4 - 16 UNF	62	71	96	93	95	0.12	12	1.2	120	_
W 930	Α	25	3/4 - 16 UNF	62	71	96	93	114	0.12	12	2.5	250	B 0.6
W 940	Α	40	3/4 - 16 UNF	62	71	96	93	142	0.12	12	2.5	250	B 0.8
W 940/1	В	40	3/4 - 16 UNF	62	71	96	93	142	0.12	12	1.2	120	_
W 940/13	F	40	3/4 - 16 UNF	62	71	96	93	142	0.12	12	2.5	250	_
W 940/18	В	40	1 – 12 UNF	62	71	96	93	142	0.12	12	2.5	250	A 0.8x1
W 950	В	45	1 – 12 UNF	62	71	96	93	170	0.12	12	2.5	250	A 1
W 950/1	В	45	1 – 12 UNF	62	71	96	93	170	0.12	12	1.2	120	_
W 962	В	70	1 – 12 UNF	62	71	96	93	210	0.12	12	2.5	250	A 1.2
W 962/2	Α	70	1 – 12 UNF	62	71	96	93	210	0.12	12	2.5	250	B 1.2
W 1130	С	30	3/4 - 16 UNF	62	71	110	108	115	0.12	12	1.0	100	-
W 1140	С	45	3/4 - 16 UNF	62	71	110	108	135	0.12	12	1.2	120	_
W 1170	С	70	1 – 12 UNF	62	71	110	108	227	0.12	12	1.2	120	_
W 11 102	С	100	1 ¹ / ₈ – 16 UN	93	104	110	108	260	0.12	12	2.5	250	_
W 1374/2	E	85	G 11/4	100	111	140	136	177	_	-	_	_	_
W 1374/4	E	85	11/2 – 16 UN – 2 B	100	111	140	136	177	_	_	0.2	20	_

Nominal pressure 35/25/20 bar (3.5/2.5/2.0 MPa)

Spin-on filters for this pressure range are used primarily for the filtration of hydraulic oils in compliance with DIN 51 524 and DIN 51 525. Applications for other liquids upon request.

 Opening pressure of bypass: 0.8 to 2.5 bar (80 to 350 KPa).

Filter mounting: unified thread in inches


Part No.	Form	Nominal flow rate ¹⁾ [l/min]	Dir	Dimensions in mm and inches							Maximum operating pressure	
			d ₁	d ₂	d₃	d ₄	d 5	h			[bar]	[MPa]
WD 724/3	Е	20	3/4 – 16 UNF	62	71	80	76	140	3.5	350	35	3.5
WD 920	Е	25	3/4 - 16 UNF	62	71	96	93	97	2.5	250	25	2.5
WD 940	Е	40	3/4 - 16 UNF	62	71	96	93	144	2.5	250	25	2.5
WD 940/2	E	35	1 – 12 UNF	62	71	96	93	144	2.5	250	25	2.5
WD 950	E	40	1 – 12 UNF	62	71	96	93	172	2.5	250	25	2.5
WD 950/2	E	50	1 – 12 UNF	62.5	72.5	98	96	170	3.5	350	25	2.5
WD 962	E	70	1 – 12 UNF	62	71	96	93	212	2.5	250	25	2.5
WD 1374	Е	95	1 ¹ / ₂ – 16 UN 100 111 140 136 177 –								20	2.0
WD 13 145	E	180	1 ¹ / ₂ – 16 UN	100	111	140	136	302	2.5	250	20	2.0

¹⁾ Flow resistance 0.3-0.6 at 36 mm²/sec.

Accessories for MANN micro-Top Spin-on filters

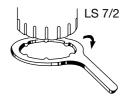
Double union

When the mounting plate is provided with a female thread, a double union is required for the assembly of the filter.

Dimensions and part numbers

Part No.	Dimensions in mm and inches											
	d ₁	d_1 d_2 d_3 a b h SW										
21 018 15 331	M 18x1.5	M 18x1.5	12	10	10	25	24					
21 019 15 111	3/4 - 16 UNF	M 18x1.5	13	17	14.5	35.5	24					
21 025 15 101	1 – 12 UNF	M 24x1.5	18	17	15.5	37	27					
21 030 15 251	1 ¹ / ₈ – 16 UN M 30x1.5 22 17.5 17.5 40 32											
21 039 15 101	11/2 – 16 UN	M 38x1.5	30	19.5	15	41	46					

Removal tool


For easy disassembly of the MANN micro-Top Spin-on filters.

Form B Form C

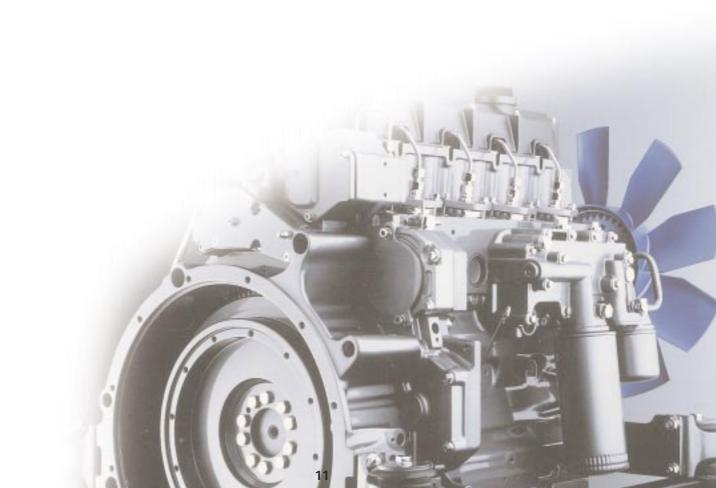
Form D

Form D

Mann micro-Top Spin-on Filters	W	7	W 8	W 9	W 11
Filter form	С	D	D	В	О
Suiting MANN removal tool	LS 7	LS 7/2	LS 8	LS 9	LS 11

Overview Catalogue Contact Products Quick search for product 🕨 🕨 Exi

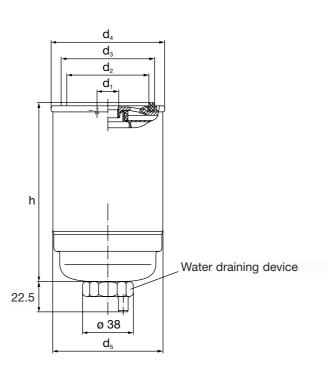
MANN Fuel filters


MANN Fuel filters are fine filters used for the elimination of wearing and noxious particles from diesel and gasoline.

Injection pumps and nozzles of diesel engines, injection systems of gasoline injection systems and carburettor installations are protected from impurities and wear most efficiently when equipped with the appropriate and ideally specified MANN fuel filter.

MANN+HUMMEL supplies spin-on filters both with or without water trap and drain as well as filters for in-line installation.

Spin-on filters are screwed on a matching connection on engines or on a separate filter head. Small-sized units can be installed in flexible pipes without extra fastening.

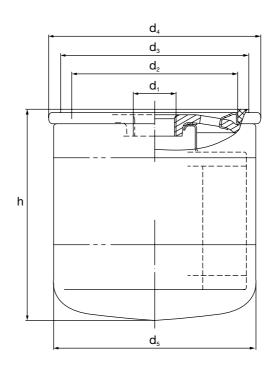

for distributor pumps of diesel engines

Small to medium-sized diesel engines, such as those found in agricultural and commercial vehicles, are commonly equipped with distributor-type fuel-injection pumps.

MANN Fuel filters for distributor pumps and sole-noid-controlled injection systems are always provided with water traps and draining devices. The usual filter solution in this case is the spin-on filter with a fineness between 2-6 μ m.

The actual filter element of the spin-on filter is fixed in the metal housing. The central connetion thread serving as output for the cleaned fuel is located in the filter cover, near the intake openings and the filter seal. Usually, 4 intake openings are arranged concentrically between the central connection and the filter seal.

Part No.	Filter fineness	Nominal flow rate	Dir	Dimensions in mm and inches							
	[µm]	[l/h]	d₁	d_1 d_2 d_3 d_4 d_5 h							
WK 842	4 – 6	80	M 16x1.5	61	70	84.5	81	133	6	0.6	
WK 842/2	2 – 3	80	M 16x1.5	61	70	84.5	81	133	6	0.6	
WK 842/6	60 (prefilter)	80	M 16x1.5	6	0.6						

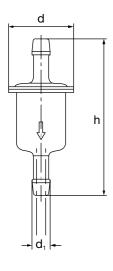

for in-line pumps of diesel engines

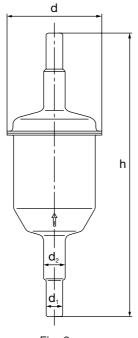
In-line pumps are utilised mainly in medium and large-size diesel engines for commercial vehicles.

For this type of pump, MANN+HUMMEL recommends fuel filters without water draining device. The average filter fineness ranges between 8 to 10 μ m.

The design of these filters is comparable to that of the spin-on filters equipped with water drainage, as used on injection installations with distributor pumps (see page 12).

Part No.	Nominal flow rate [l/h]	Dir d₁	Dimensions in mm and inches $d_1 \qquad \qquad \qquad d_2 \qquad \qquad d_3 \qquad \qquad d_4 \qquad \qquad d_5 \qquad \qquad h$							
W// 740/0	100	Machae		74	00	70	00	0	0.0	
WK 712/2	120	M 16x1.5 62 71 80 76 80						6	0.6	
WK 731	120	M 16x1.5	M 16x1.5 62 71 80 76 117							
WK 731/1	120	M 16x1.5	30	38	80	76	115	2.5	0.25	
WK 712/3	120	M 16x1.5	62	71	80	76	80	9.5	0.95	
WK 723	120	M 16x1.5 62 71 80 76 124						9.5	0.95	
WK 940/5	120	M 16x1.5	6	0.6						
WK 962/4	200	M 16x1.5	62	71	96	93	210	2.5	0.25	


for installation in flexible lines


Specially designed filters are available for installation in hoses and flexible lines.

Small filters made of transparent synthetic material can be used in carburettor engines, as well as for the filtration of diesel fuel and heating oil, provided the filter fineness requirements are less demanding. They allow relatively high flow rates though their size is moderate.

Larger in-line filters with metal housing and filter media meeting high standards of fineness can be supplied upon request (used for example to protect injection aggregates on gasoline and injection engines).

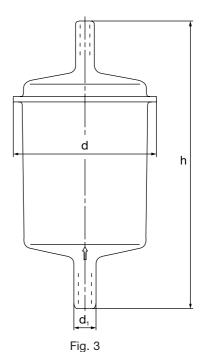


Fig. 1

Fig. 2

Part No.	Fig.	for installation in lines	Dimensio	ns in mm	Mesh width or filter paper
		d_1 d_2	d	h	
WK 21	1	6–mm	21	50	50 μm
WK 21/2	1	6-mm	21	50	136 μm
WK 31/2	2	6- and 8-mm	35	104	Filter paper element
WK 31/4	2	8–mm	37	104	200 μm
WK 31/5 ¹⁾	2	8-mm¹)	37 105		200 μm
WK 32	2	6- and 8-mm	37 142		Filter paper element
WK 43/1	3	8–mm	59	108	Filter paper element

¹⁾ right-angled output socket

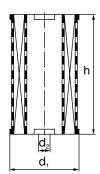
MANN micro-Top Filter Elements for filters for liquids

MANN micro-Top filter elements are fine filters for engine and hydraulic oils, fuels, coolants and paints.

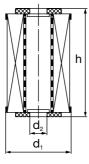
The filter fineness is in the μm range.

The MANN micro-Top filter elements are distinguished by following features:

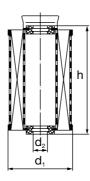
- High and constant filtration efficiency
- High dirt-retention capacity of the paper filter elements due to the large filtering surface and the optimal paper structure.
- The specially embossed paper ensures lasting efficiency of the whole filter surface over the entire operating time.
- Resistance to water, coolants, fuels, oils and other hydrocarbons up to temperatures of 140 °C thanks to the special impregnation.
- Various types as per DIN- or ISO-specifications.
- Available in more than 100 countries.

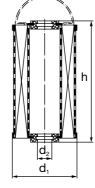

Operation

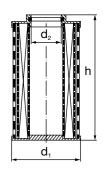
The flow of liquid to be filtered passes the filter from the outside to the inside. Exception: Filter elements for steering hydraulic systems.


Maintenance

The maintenance frequency is usually prescribed by the engine or installation manufacturer. Servicing is limited to the replacement of the MANN micro-Top filter elements.


Types


Form A


Form B

Form C

Form D

Form E

for fuel filters and partial-flow oil filters

MANN micro-Top Filter elements and MANN felt filter elements for fuel filters

Part MANN micro-Top	No. MANN Felt filter	Form (Page 16)	Nominal flow rate [l/h]	Dimensions in mm			Short designation as per DIN 73 358
filter elements	element			d₁	d ₂ ¹⁾	h	
P 46/1	_	В	35	40	8.5	133	
P 64	_	Α	15	52	12	44	
P 78	_	Α	37	65	14	53	
P 609	_	B ⁵⁾	30	51	8 ³⁾	68	
P 707¹)	BF 707 ¹⁾	D ⁵⁾	904)	65	142)	116	DIN 73 358 – E 0.5
P 715 ¹⁾	BF 715 ¹⁾	D ⁵⁾	654)	65	142)	65	DIN 73 358 – E 0.2
P 725	_	Α	95	65	14	100.5	
P 810	_	Α	70	70	21	84	
P 811 ¹⁾	BF 811 ¹⁾	D ⁵⁾	1204)	83	142)	147	DIN 73 358 – E 1
P 824	_	Α	80	72	33	89	
P 825	_	B ⁵⁾	72	77	26	100	
P 833	_	Α	110	72	21	125	
P 921/2	_	B ⁵⁾	120	83	26	118	
P 934	_	B ⁶⁾	150	83	10 ³⁾	167	
P 1018/1 ¹⁾	BF 1018/11)	D	3104)	106	202)	171.5	DIN 73 358 – E 2

¹⁾ Interchangeable in filters to DIN 73 358, 73 359 and 73 360. For this reason, the dimensions indicated are those of the largest element.

MANN micro-Top Filter elements (fiber pack) for oil filters in partial flow

Part No.	Form (Page 16)	Filling volume [cm³]	Dimensions in mm		mm h	Short designation as per DIN 71 455
PF 815	D	310	75	14	104	
PF 915	D	520	90	14	110	
PF 925	D	630	98	14	110	DIN 71 455 – E 1
PF 1025	D	1 300	98	14	206	
PF 1155	D	950	110	14	125	DIN 71 455 – E 1.5
PF 1190	D	1 600	110	14	202	DIN 71 455 – E 2.5
PF 13 140	D	2 300	130	14	202	DIN 71 455 – E 3.5
PF 1535	D	3 800	150	25	250	DIN 71 455 – E 5
PF 1552	D	5 500	150	32	367	DIN 71 455 – E 8
PF 19 326	D	10 100	197.5	22	378	

¹⁾ Seal diameter for pipes to DIN 2391 or similar bolt.

²⁾ Seal diameter for pipes to DIN 2391 or similar bolt.

³⁾ Nominal diameter for bolt.

⁴⁾ Flow rate with 1 m gradient (when new, to DIN 73 358).

⁵⁾ With felt gasket.

⁶⁾ With cork insert.

Star-pleated paper elements for full-flow oil filters

MANN micro-Top Filter elements for full-flow oil filters

Part No.	Form (Page 16)	Nominal flow rate	Dim	ensions in	mm	Short designation as per DIN ISO 7747		
		[l/min]	d₁	d ₂	h	·		
H 53	А	5	40	12.8	64			
H 53/3 ¹⁾	Α	5	40	12.8	64			
H 601	Α	12 59 18 10		100.5				
H 617 ⁹⁾	Α	16	59	28.2	100.5			
H 712	B ⁵⁾	23	70	33	156.5	,		
H 715/1	В	13	70	20	109			
H 720	А	19	70	26	117	A 70x26x117		
H 729	Α	22	70	26	165	A 70x26x165		
H 804	B ⁷⁾	22	69	33	140			
H 813/1	B ⁵⁾	11	72	32	87.5			
H 815	С	15	76	192)	107.5			
H 816	B ⁶⁾	18	72	32	108.5			
H 820/3	А	20	72	21	117			
H 827/1	В	25	72	33	154			
H 829	А	28	72	26	165			
H 928/1	Α	30	87	20	117			
H 932/2	А	30	84	24.2	134			
H 943	Α	46	84	24.2	196			
H 943/2	B ⁶⁾	53	90	32	201			
H 947/1	D	47	84	23.4	196			
H 960	А	57	84	24.2	229			
H 973	D4)	72	90	24.4	220.2			
H 1018/2	B ⁷⁾	22	94	34	78			
H 1029/1	B ⁶⁾	32	100	34	101			
H 1032	С	273)	100	192)	126			
H 1034	Α	40	100	30	117	A 100x30x117		
H 1038	B ⁵⁾	35	94	34	119.5			
H 1048	B ⁷⁾	50	100	26	151			
H 1050/1	А	57	100	30	165	A 100x30x165		
H 1050/2	В	50	99	30	182			
H 1053	С	61 ³⁾	100	25 ²⁾	204			
H 1053/2	B ⁵⁾	49	92	49	179.5			
H 1060	Α	68	100	30	196	A 100x30x196		
H 1072	A D5	82	100	30	234	A 100x30x234		
H 1072/11	B ⁵⁾	82	100	40.5	236.5			
H 1075/1	В	72	92	50	262	A 400 40 004		
H 1081	A	82	100	40	234	A 100x40x234		
H 1258	A	63	117	73	165			
H 1263/1	В	60	117	56	138			
H 1290/1	В	75	118	59	165			
H 1465 ¹⁾	A D5)	63	132	95	163			
H 1496	B ⁵⁾	85	133	88	229			
H 1565/1	B ⁷⁾	68	150	88	106.5			
H 10 196	A P5)	195	100	40	565			
H 12 105	B ⁵⁾	100	114	36	232			
H 12 107	A	95	117	56 56	196			
H 12 107/1	A	81	117	56	196			
H 12 110/1	В	88	117	56	227.5			

for full-flow oil filters and filters for steering hydraulic systems

MANN micro-Top Filter elements for full-flow oil filters (continued)

Part No.	Form (Page 16)	Nominal flow rate	Dim	ensions in	mm	Short designation as per DIN ISO 7747
		[l/min]	d₁	d ₂	h	
H 12 113	А	111	117	43	229	
H 12 178	B ⁶⁾	132	117	55	336	
H 12 225	В	183	117	56	462	
H 12 270	В	222	117	56	559	
H 13 127/18	Α	104	128	14.5	210.5	
H 15 111/2	Α	98	150	88	165	
H 15 134	Α	143	150	88	196	A 152x88x196
H 15 134/1	B ⁷⁾	143	150	88	211	
H 15 135	С	80	150	31.5	252	
H 15 190	С	80	150	31.5	364	
H 15 190/6	С	80	150	31	364	
H 15 190/11	С	80	150	31	364	
H 15 222/2	Α	200	150	88	330	
H 15 263 ¹⁾	В	262	150	88	425	
H 15 395	В	392	150	88	631	
H 15 432	В	355	150	88	597	
H 15 475	С	80	150	31	364	
H 15 490	Α	525	150	88	722	
H 15 490/2	В	525	150	88	733	
H 18 265	Α	227	170	115	363	
H 18 300	А	303	170	115	484	
H 20 211	В	175	194	118	183	
H 20 440	В	363	194	118	366	
H 25 669	А	663	242	132	366	

- 1) Flow from the inside to the outside.
- 2) Seal diameter for pipes to DIN 2391 or similar bolt.
- 3) Flow rate related to discharge cross section.
- 4) Without clip.
- 5) With cardboard end cap as gasket.

- 6) With felt gasket.
- 7) With cork gasket.
- 8) See project drawing.
- 9) With bypass valve.

MANN micro-Top Filter elements for filters for steering hydraulic systems

Part No.	Form (Page 16)						
		[l/min]	d₁	d ₂	h		
H 601/4	А	13	60	18	100.5		
H 615	С	13	59	13¹)	111.5		
H 910/2	C ²⁾	9	82	13¹)	60.5		
H 919/7	С	25	82	13¹)	111.5		

¹⁾ Seal diameter for pipes to DIN 2391 or similar bolt.

²⁾ Without grip.

for paint filters and high-pressure filters for hydraulic systems

MANN micro-Top Filter elements for paint filters

Part No.	Form (Page 16)	Nominal flow rate	Dim	Dimensions in mm		Filter fineness µm absolute
			d₁	d ₂	h	
H 840	B ²⁾		72	27	251	50
H 845	B ²⁾		72	27	251	25
H 850/4	В		72	27	251	5
H 850/5	В		72	27	251	10
H 965	B ²⁾	indicated	90	27	251	35
H 974	B ²⁾		90	27	251	25
H 974/1	B ²⁾	upon	90	27	251	50
H 984	B ²⁾		90	27	251	10
H 996	B ²⁾	request	90	27	251	5
H 15 206/1	С		150	311)	364	35
H 15 230/1	С		150	311)	364	25
H 15 250/1	С		150	311)	364	10
H 18 321	A		180	120	366	10
H 18 321/1	А		180	120	366	25

¹⁾ Outer diameter to DIN 2391.

MANN micro-Top Filter elements for high-pressure filters for hydraulic systems

Part No.	Form (Page 16)	Nominal flow rate	Dim	ensions in	mm	Filter fineness µm absolute
		[l/min]	d ₁	d ₂	h	
HD 46	E	25	40	18	122	25
HD 46/1	E	20	40	18	122	3
HD 46/2	E	25	40	18	122	10
HD 46/3	E	25	40	18	122	10
HD 65	E	60	57	25	71	25
HD 65/1	E	45	57	25	71	3
HD 65/2	E	45	57	25	71	10
HD 610	E	100	57	25	124	25
HD 610/1	E	70	57	25	124	3
HD 610/2	E	70	57	25	124	10
HD 613	E	150	57	25	171	25
HD 613/1	E	100	57	25	171	3
HD 613/2	E	100	57	25	171	10
HD 938	E	300	85	46	200	25
HD 938/1	E	250	85	46	200	3
HD 938/2	E	250	85	46	200	10
HD 958	E	450	85	46	300	25
HD 958/1	E	350	85	46	300	3
HD 958/2	E	350	85	46	300	10

²⁾ With felt gasket.

MANN Elements for EDM machines

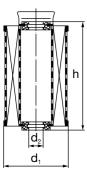
Highest quality ...

The dielectrics used in cavity-sinking and wire EDM machines must be cleaned of the particles generated during the erosion process. MANN micro-Top filter elements have been used successfully for years for super-fine filtration of dielectrics and de-ionized water. Decades of experience and a close cooperation with leading manufacturers of EDM machinery have resulted in high-quality products with a filter fineness ranging between 3 and 25 µm.

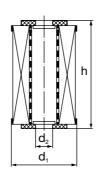
Design

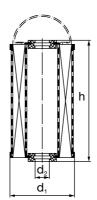
MANN Filter Elements for EDM machines have a fibre-pack filling or a star-folded paper element. A large filtration surface is achieved by the special star-folding geometry. A highly efficient extraction and a large dirt-holding capacity ensure a long service life. When defining your filtration equipment, please choose element sizes that already exist: this simplifies the spare parts supply and store keeping. For matching filter housings see page 26.

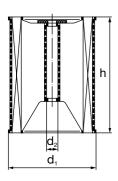
Manufacturer

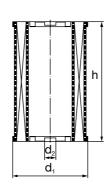

Matching MANN Filter Element¹⁾

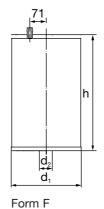
AEG	H 15 190 n, H 15 135 n, H 15 135 P
Agema	H 15 190 n
Agemaspark	H 1096
Agie	H 15 190 n, H 15 190/11, H 15 190/16,
	H 15 475, H 15 475/1
BES	H 15 190 n
Brother	H 31 967
Charmilles	H 15 190 n, H 15 190/14, H 15 190/16
Deckel	H 15 190 n, H 15 190/16
Exeron	H 31 967
Fanuc	H 34 1158/2, H 34 1158/4
Hostek	H 15 190 n, H 15 190/16
Hitachi	H 31 1033/2
Ingersoll-Hansen	H 15 190 n, H 15 190/16
Japax	H 15 190 n, H 15 190/16
Jiten	H 15 190 n, H 15 190/16
Makino	H 26 644/1, H 31 1033
Mitsubishi	H 31 1033, H 31 967
Multiform	H 15 190 n, H 15 190/16
Nassovia	H 31 967, H 15 190 n, H 15 190/16
Sinitron	H 15 190 n, H 15 190/16
Sodick	H 34 1158/2, H 34 1158/3
Seibu-Walter	H 15 190 n, H 15 190/16
Zimmer+Kreim	H 15 190 n, H 15 190/16

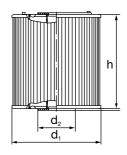

¹⁾ For the respective dimensions and filter fineness, please refer to the tables on page 24 and 25.


MANN Elements for erosion machines




Form B


Form C

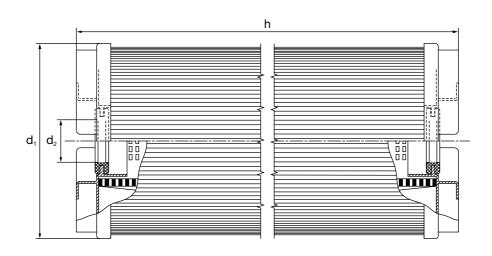


Form E

Form G

Part No.	Form	Filtering surface	Dim	ensions in	mm	Filter fineness	Admission (direction of flow)
		[cm²]	d₁	d ₂	h	[µm]	
H 740	В	3 900	62	30.5	255	5 - 8	outside in/inside out
H 845	В	4 390	72	27	251	10	outside in/inside out
H 1053 n	Α	6 770	100	25	204	10	outside in/inside out
H 1096	С	9 300	100	221)	202	3 - 5	outside in/inside out
H 15 135 n	Α	17 900	150	321)	252	10	outside in/inside out
H 15 135 P	Α	21 200	150	321)	252	3 - 5	outside in/inside out
H 15 190	Α	20 500	150	321)	364	10	outside in/inside out
H 15 190/6	Α	27 500	150	321)	364	3 - 5	outside in/inside out
H 15 190/11	Α	27 500	150	321)	364	3 - 5	outside in/inside out
H 15 190/12	Α	21 600	150	321)	364	25	outside in/inside out
H 15 190/14	Α	27 500	150	321)	364	3 - 5	outside in/inside out
H 15 475	Α	47 000	150	321)	364	3 - 5	outside in/inside out
H 34 1158/2	D	113 200	340	45.5	450	3 - 5	inside in/outside out
H 34 1158/3	D	113 200	340	45.5	450	3 - 5	inside in/outside out
H 34 1158/4	D	145 000	340	45.5	450	3 - 5	inside in/outside out
H 31 967	E	95 300	302	29	507	3 - 5	inside in/outside out
H 31 1033	F	99 125	302	54	503	3 - 5	inside in/outside out
H 31 1033/2	F	99 125	302	54	503	3 - 5	inside in/outside out
H 26 644/1	G	53 700	261	46	280	3 - 5	outside in/inside out
PF 19 326	С	-2)	197.5	221)	378	5 – 8	outside in/inside out

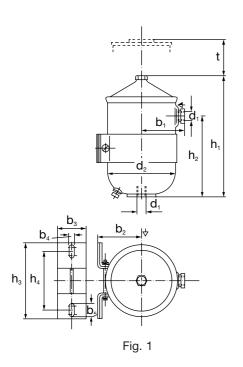
¹⁾ Outer diameter to DIN 2391.

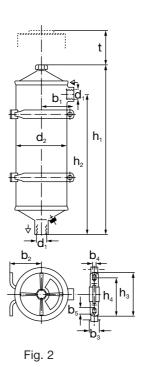

²⁾ Fibre pack element, no surface filter.

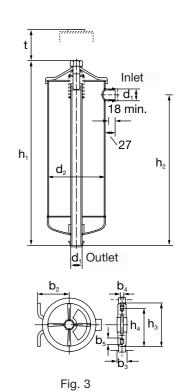
Metal-free elements for EDM machines

Bearing in mind the increasing costs of waste disposal, MANN+HUMMEL and leading manufacturers of EDM machinery have developed a metal-free filter element made of plastics, that can be entirely disposed of in incenerating plants for special refuse.

- for wire and cavity-sinking EDM machines
- free from metal
- corrosion-proof
- long service life
- simple waste removal




Part No.	Filtering surface [cm²]	Dimensions in mm		Filter fineness [µm]	Admission (direction of flow)	
H 15 190/16	30 000	150	32 ¹⁾	375	3 - 5	outside in/inside out
H 15 475/1 ²⁾	45 320	150	321)	375	3 - 5	outside in/inside out


¹⁾ Outer diameter to DIN 2391.

²⁾ For cavity-sinking EDM machines only.

Housings for elements for EDM machines

Part numbers and technical data

Part No.	Fig.	Nominal flow rate ¹⁾ [l/min]	Weight approx. [kg]	Respective MANN micro-Top filter element
67 507 75 106 ²⁾	1	35	2.9	H 1053 n
67 816 75 103 ²⁾	2	70	6.8	H 15 135 Pn
67 816 75 106 ²⁾	1	80	6.6	H 15 135 n
67 825 75 103	2	75	9.4	H 15 190/6 n
67 825 30 871 ³	3	_	_	all H 15 190/Types

Part numbers and dimensions

Part No.	Fig.					Dime	ensions in mm	and in	iches				
		b ₁	b ₂	b₃	b ₄	b₅	d ₁	d ₂	h₁	h ₂	h₃	h ₄	t
67 507 75 106 ²⁾	1	75	75	30	9	23	M 22x1.5	117	285	212	132	102	180
67 816 75 103 ²⁾	1	110	100	30	10	20	G 1	165	398	250	140	105	202
67 816 75 106 ²⁾	1	110	100	30	10	20	G 1	163	398	250	140	105	202
67 825 75 103	2	104	100	25	10	20	G 1	163	552	456	140	105	322
67 825 30 871 ³⁾	3	104	100	25	10	20	G 1	163	510	430	140	105	322

- 1) The flow rates are valid for oil- and water-based dialectrics.
- Housing supplied with two brackets.
- 3) Housing for wire EDM machines is made of stainless steel. Please order brackets separately.

Contact

MANN High-pressure filters

Catalogue

Application

MANN High-pressure filters as per DIN 24550 are used primarily for the filtration of lube oils and hydraulic fluids in engines and installations. A special version in star-pleated strainer design is available for the filtration of polyurethane components (see page 34 to 36).

Design

A high-pressure filter consists of a filter housing, a filter head with two threads for connection and a replaceable MANN micro-Top filter element from the HD range. The dirt-retaining capacity of this element is particularly high due to the large filtering surface. The design and the pleat support of the filter element allow for pressures ranging from 10 to 180 bar (1 MPa to 18 MPa), tested to DIN ISO 2941.

Versions available:

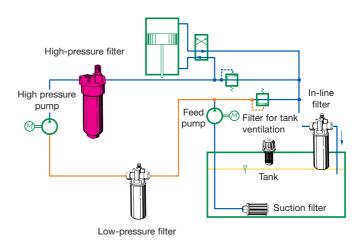
Without bypass valve without service indicator

With bypass valve and service indicator

With bypass valve and service switch

Without bypass valve with service switch

The service indicator or switch and the bypass valve are combined to signal the need for maintenance before the bypass valve opens.


Operation

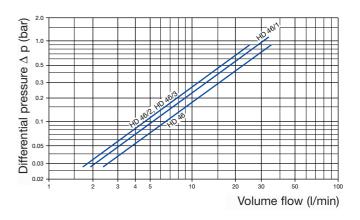
MANN High-pressure filters are used as full-flow filters, i.e. they must be installed in the circuit in a way ensuring that all the liquid to be cleaned passes through the filter every time it circulates.

Assembly and Maintenance

The filter is installed in the pipeline using the connection threads (see dimension table for the threads). Attention must be paid to the direction of flow, indicated on the threads by arrows. Maintenance is limited to the replacement of the MANN micro-Top filter element.

MANN Filters in hydraulic circuits

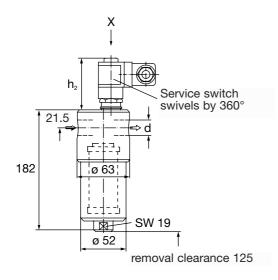
Technical data

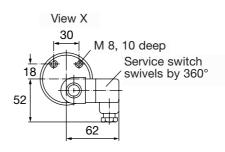

Filter element	Performance data as per ISO 4572 at a differential pressure of 5 bar (500 KPa) (differential pressure stability)
HD / 1	β ₆ ≥ 75
HD / 2	β ₁₀ ≥ 75 (Δp 15 bar/1.5 MPa)
HD / 3	β ₁₀ ≥ 75 (Δp 60 bar/6.0 MPa)
HD	$\beta_{25} \geq 75$

Filter fineness:	β_6 to $\beta_{25} \ge 75$
Nominal flow rate:	20 to 125 I/min
Operating pressure:	200/400 bar (20/40 MPa)
Operating temperature:	-25 °C to +120 °C
Material:	Filter head made of cast iron with spheroidal graphite
	Filter can made of steel
Bypass valve:	Opening pressure: 7 bar (700 KPa)
Service indicator:	Indication through red signal ring at a differential
	pressure of 5 bar (500 KPa)
Service switch:	Switching at a differential pressure of 5 bar (500 KPa)
	Electrical connections see page 49/50

Nominal pressure 200 bar (20 MPa)

Characteristics


Flow resistance as per ISO 3968 at 32 mm²/sec.


Dimensions and part numbers

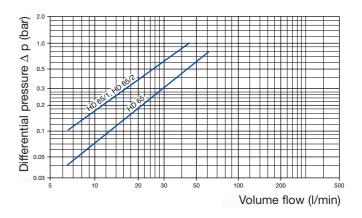
• Filter size 0.2 I

• Weight: approx. 2 kg

Dimensions filter housing with service switch

Filter housing with service switch

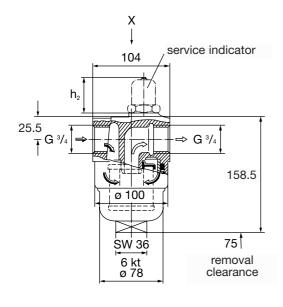
Part No. for complete filter	Nominal flow rate [I/min]	MANN micro-Top filter element (see page 24)	Dimensions and inc		Service indication ¹⁾	'	se-/burst ssure [MPa]
67 201 62 106	25	HD 46	M 18x1.5	13	V	10	1
67 201 62 101	25	HD 46/2	M 18x1.5	13	V	10	1
67 201 62 126	20	HD 46/1	G ³ /8	63	S	60	6
67 201 62 116	25	HD 46/3	G ³ / ₈	63	S	60	6

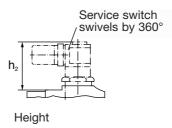

 $^{^{1)}}$ V = Bypass valve (opening pressure: 7 bar)

S = Service switch make/break contact (convertible)

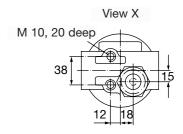
Nominal pressure 400 bar (40 MPa)

Characteristics


Flow resistance as per ISO 3968 at 32 mm²/sec.


Dimensions and part numbers

• Filter size 0.2 I

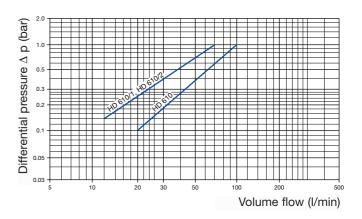

• Weight: approx. 4.9 kg

service switch

Filter housing with service switch

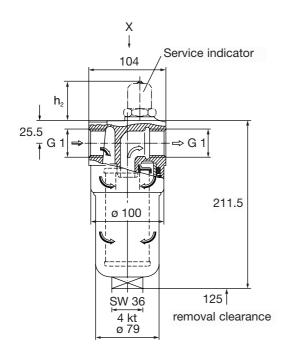
Part No. for complete filter	Nominal flow rate [l/min]	MANN micro-Top filter element (see page 24)	h₂ [mm]	Service indication ¹⁾		se-/burst ssure [MPa]
67 300 62 156	63	HD 65	11.5	-	45	4.5
67 300 62 166	63	HD 65	53.5	A and V	45	4.5
67 300 62 176	63	HD 65	70.5	S and V	45	4.5
67 300 62 202	45	HD 65/2	11.5	_	15	1.5
67 300 62 212	45	HD 65/2	53.5	A and V	15	1.5
67 300 62 222	45	HD 65/2	70.5	S and V	15	1.5
67 300 62 180	35	HD 65/1	70.5	S	180	18

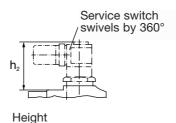
¹⁾ A = Service indicator


V = Bypass valve (opening pressure: 7 bar)

S = Service switch make/break contact (convertible)

Nominal pressure 400 bar (40 MPa)


Characteristics


Flow resistance as per ISO 3968 at 32 mm²/sec.

Dimensions and part numbers

- Filter size 0.4 I
- Weight: approx. 5.6 kg

View X M 10, 20 deep 38 12 18

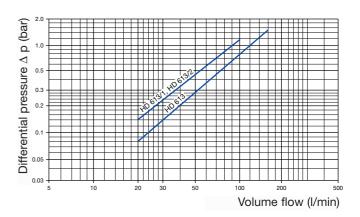
Dimensions filter housing

service switch

Filter housing with service switch

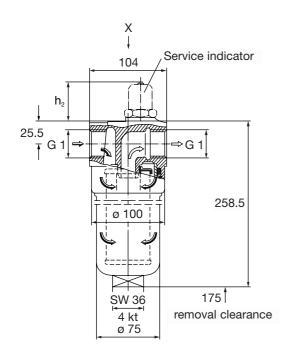
Part No. for complete filter	Nominal flow rate [l/min]	MANN micro-Top filter element (see page 24)	h² [mm]	Service indication ¹⁾		se-/burst ssure [MPa]
67 301 62 186	100	HD 610	11.5	-	45	4.5
67 301 62 196	100	HD 610	53.5	A and V	45	4.5
67 301 62 206	100	HD 610	70.5	S and V	45	4.5
67 301 62 222	70	HD 610/2	11.5	_	15	1.5
67 301 62 232	70	HD 610/2	53.5	A and V	15	1.5
67 301 62 242	70	HD 610/2	70.5	S and V	15	1.5
67 301 62 210	50	HD 610/1	70.5	S	180	18

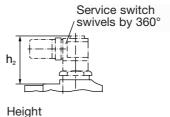
¹⁾ A = Service indicator

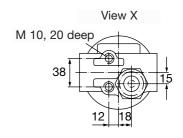

V = Bypass valve (opening pressure: 7 bar)

S = Service switch make/break contact (convertible)

Nominal pressure 400 bar (40 MPa)


Characteristics


Flow resistance as per ISO 3968 at 32 mm²/sec.



Dimensions and part numbers

- Filter size 0.6 l
- Weight: approx. 6.3 kg

Dimensions filter housing

service switch

Filter housing with service switch

Part No. for complete filter	Nominal flow rate [l/min]	MANN micro-Top filter element (see page 24)	h₂ [mm]	Service indication ¹⁾		se-/burst ssure [MPa]
67 302 62 146	125	HD 613	11.5	-	45	4.5
67 302 62 156	125	HD 613	53.5	A and V	45	4.5
67 302 62 166	125	HD 613	70.5	S and V	45	4.5
67 302 62 192	85	HD 613/2	11.5	_	15	1.5
67 302 62 202	85	HD 613/2	53.5	A and V	15	1.5
67 302 62 212	85	HD 613/2	70.5	S and V	15	1.5
67 302 62 170	60	HD 613/1	70.5	S	180	18

¹⁾ A = Service indicator

V = Bypass valve (opening pressure: 7 bar)

S = Service switch make/break contact (convertible)

High-pressure filters with star-pleated strainer inserts

For the filtration of polyurethane components

These high pressure filters are used primarily for the filtration of polyurethane components. The filter housings are the same as on page 30 to 33. To meet the requirements of reaction injection moulding machines MANN+HUMMEL has developed special filter elements.

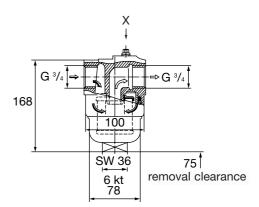
Please send us the fax on page 3. We would like to help you determining the optimal filter for your special application.

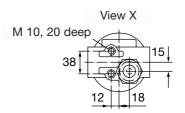
Technical data

Filter fineness:	25 to 200 μm
Nominal flow rate:	25 to 175 l/min
Operating pressure:	maximum 400 bar (40 MPa)
Operating temperature:	-25 °C to +120 °C
Material:	Filter head: cast iron with spheroidal graphite Filter can: steel
Filter element: collapse-/burst pressure as per ISO 2941:	max. 45 bar (4.5 MPa)

High-pressure filters with star-pleated strainer inserts Nominal pressure 400 bar (40 MPa)

Type 300


Housing					
Part No. Volume Material Housing Head/Can					
62 300 30 931	62 300 30 931 0.2 I GGG/St-painted				
62 300 30 935					


Suitable star-pleated strainer inserts				
Part No. inserts	Mesh²) [mm]	Material of strainer	Nominal flow rate ¹⁾ [I/min]	
62 301 50 692	0.03	St	25	
62 301 50 695	0.03	VA	25	
62 301 52 692	0.06	St	40	
62 301 52 695	0.06	VA	40	
62 301 53 692	0.1	St	50	
62 301 53 695	0.1	VA	50	
62 301 55 692	0.2	St	100	
62 301 55 695	0.2	VA	100	

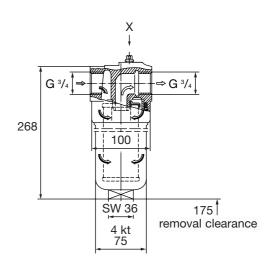
Flow rates apply to liquids with a viscosity of 100 mm²/sec. (cSt) at a flow resistance of 0.2 bar (20 KPa).

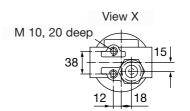
• Filter size 0.2 I

Filtering surface: 540 cm²
Weight: approx. 4.9 kg

Type 302

Housing					
Part No. Volume Material Housing Head/Can					
62 302 30 991 0.6 I GGG/St-painted					
62 302 30 995 0.6 I GGG/St-chem. nickeled					

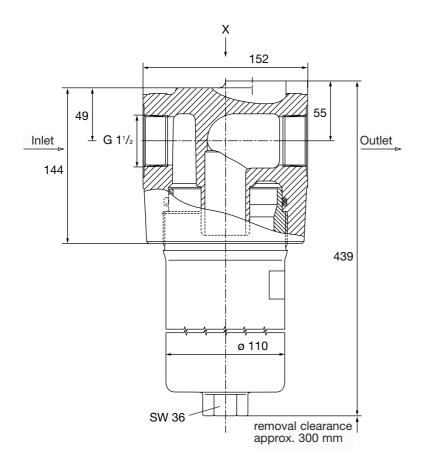

Si	Suitable star-pleated strainer inserts					
			Nominal			
Part No.	Mesh ²⁾	Material of	flow rate1)			
inserts	[mm]	strainer	[l/min]			
62 302 50 132	0.03	St	35			
62 302 50 135	0.03	VA	35			
62 302 52 132	0.06	St	55			
62 302 52 135	0.06	VA	55			
62 302 53 132	0.1	St	60			
62 302 53 135	0.1	VA	60			
62 302 55 132	0.2	St	120			
62 302 55 135	0.2	VA	120			

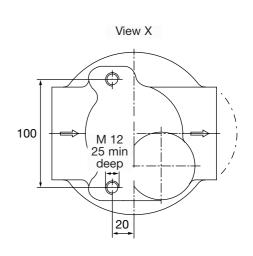

Flow rates apply to liquids with a viscosity of 100 mm²/sec. (cSt) at a flow resistance of 0.2 bar (20 KPa).

Filter size 0.6 I

Filtering surface: 1 520 cm²

Weight: approx. 6.3 kg




²⁾ Other mesh sizes upon request.

Other mesh sizes upon request.

High-pressure filters with star-pleated strainer inserts Nominal pressure 400 bar (40 MPa)

- Filter size 2.4 I
- Filtering surface: 5 500 cm²

Type 506

Housing				
Part No. Housing	Volume	Material Head/Can		
62 506 30 991	2.4	GGG/St-painted		
62 506 30 995 2.4 I GGG/St-chem. nickeled				

Suitable star-pleated strainer inserts						
Nominal						
Part No.	Part No. Mesh ²⁾ Material of flow rate ¹⁾					
inserts	inserts [mm] strainer [l/min]					
62 506 52 105	0.06	VA	150			
62 506 53 105	0.1	VA	175			

Flow rates apply to liquids with a viscosity of 100 mm²/sec. (cSt) at a flow resistance of 0.2 bar (20 KPa).

Example:

We look for a corrosion-free filter for a flow rate of 50 l/min (at 100 mm 2 /s), filter fineness 60 μ m.

Part No. Housing: **62 302 30 995** chem. nickeled, see page 35

Part No. Insert: **62 302 52 135**

Strainer VA, see page 35

²⁾ Other mesh sizes upon request.

MANN In-line filters

Catalogue

MANN In-line Filters are fine filters used mainly in hydraulic systems for the filtration of motor and gearbox oils and in lube-oil circuits in the general machine construction. The fineness of the MANN micro-Top filter elements (starpleated paper) is in the µm range.

Design

The filters consist of a filter head with two threads, mounting holes and a MANN micro-Top Spin-on filter

Versions available:

 with bypass valve, without service indicator

 with bypass valve and service indicator

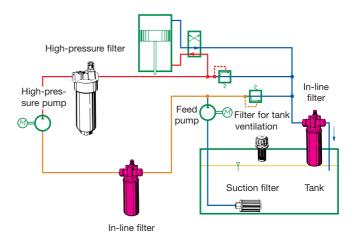
 with bypass valve and service switch (make /break contact, convertible)

Service indicators or switches and bypass valves are combined to signal the need for filter service before the bypass valve opens.

Operation

MANN In-line filters are mainly used as full-flow filters. All the liquid to be cleaned passes through every time it circulates. The filters can also be used for return flow.

Deposit of dirt particles on the paper element causes the flow resistance to increase. When a certain differential pressure has been reached (e.g. upon cold start or when the filter element is clogged), a bypass valve in the filter opens, ensuring sufficient and constant lubrication.

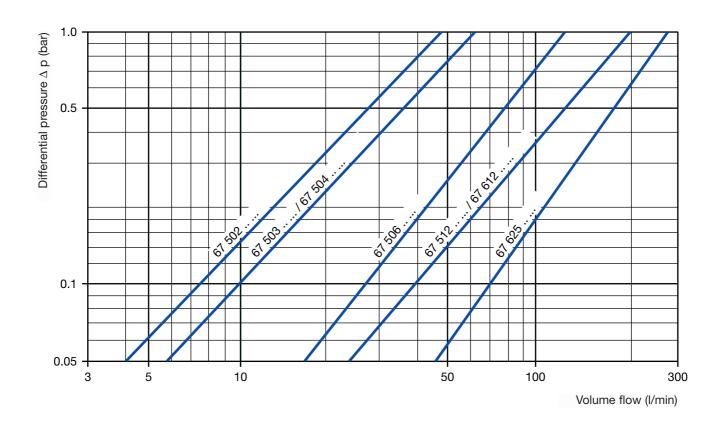

... for full and return flow

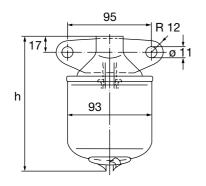
Assembly and maintenance

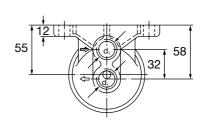
The filters are installed in pipelines (refer to dimension table for threads). Attention must be paid to the flow direction, indicated on the threads by arrows. Maintenance is limited to the replacement of the clogged spin-on can:

A service indicator or switch signals that a service is necessary. The MANN removal tool on page 9 helps in loosening the filter.

MANN In-line filters in hydraulic circuits

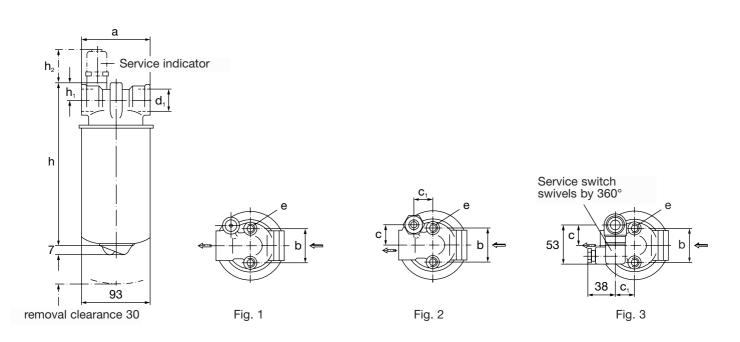

Technical data


Filter fineness:	12 µm 50 % fractional separation efficiency (single pass) 30 µm 99 % fractional separation efficiency (single pass) Other filter fineness upon request
Nominal flow rate:	25 to 540 I/min
Operating pressure:	14; 20; 25 or 35 bar (1.4; 2; 2.5 or 3.5 MPa) For non-automotive applications, observe the regulations on the construction of pressure vessels
Operating temperature:	Max. 120 °C
Material:	Filter head made of cast aluminium
Bypass valve:	Opens at differential pressures of 2.5 or 3.5 bar (250 or 350 KPa) with our without non-return valve
Service indicator:	Indication through red signal ring at a differential pressure of 1.8 bar (180 KPa)
Service switch:	Switching at differential pressure of 1.8 bar (180 KPa) Electrical connections see page 49/50


Nominal pressure 14 bar (1.4 MPa)

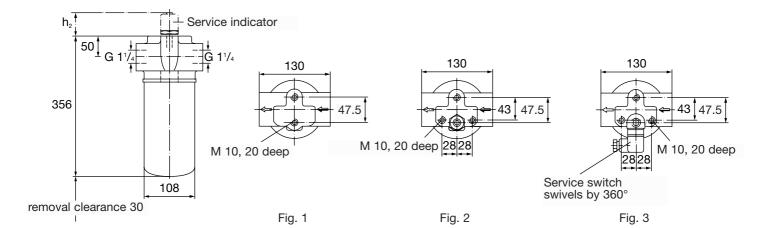
Characteristics

Flow resistance as per ISO 3968 at 36 mm²/sec.



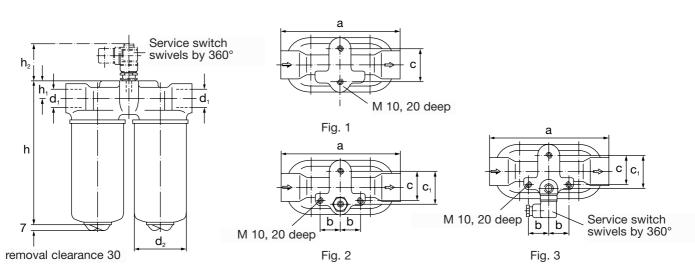
Part No.	Nominal flow rate [l/min] ¹⁾	Spin-on filter	Dimensions in I	mm and inches	Weight approx. [kg]
67 502 62 026	25	W 920	M 20x1.5	145	0.72
67 503 62 026	40	W 940	M 20x1.5	192	0.83
67 502 62 106	25	W 920	G 1/2	145	0.72
67 504 62 126	40	W 940	G 1/2	192	0.81

¹⁾ Flow rate values are only valid for liquids with 36 mm²/sec and flow resistance according to the above diagram.



Part No.	Fig.	Spin-on filter			Dime	nsion		Service indication	Weight approx.				
			а	b	С	C ₁	$d_1^{1)}$	е	h	h₁	h ₂		[kg]
Nominal flow rate: 25	l/min												
67 502 62 256	1	W 920	90	40	-	_	G 1/2	M 8,	147	22	_	_	1.2
67 502 62 236	2	W 920	90	40	21.5	24	G 1/2	16	147	22	46	optical	1.2
67 502 62 226	3	W 920	90	40	21.5	24	G 1/2	deep	147	22	62	electrical	1.3
Nominal flow rate: 40	I/min												
67 503 62 306	1	W 940	90	40	-	-	G 1/2	M 8,	194	22	_	_	1.2
67 503 62 276	2	W 940	90	40	21.5	24	G 1/2	16	194	22	46	optical	1.2
67 503 62 266	3	W 940	90	40	21.5	24	G 1/2	deep	194	22	62	electrical	1.3
Nominal flow rate: 70	l/min												
67 506 62 706	1	W 962/2	95	47.5	_	_	G 1	M 8,	269	25	_	_	1.6
67 506 62 666	2	W 962/2	95	47.5	28.5	26	G 1	16	269	25	46	optical	1.6
67 506 62 676	3	W 962/2	95	47.5	28.5	26	G 1	deep	269	25	62	electrical	1.7

¹⁾ Other threads upon request.


²⁾ Flow rate values are only valid for liquids with 36 mm²/sec and flow resistance according to the diagram on page 40.

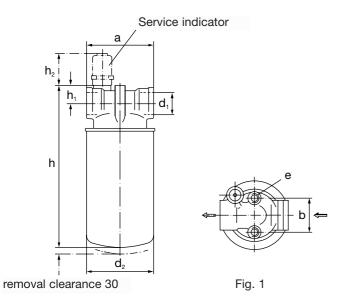
Nominal pressure 14 bar (1.4 MPa)

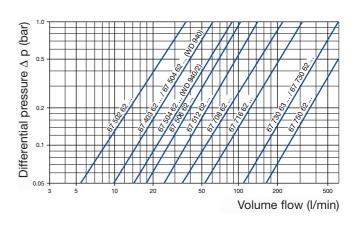
Part No.	Fig.	Nominal flow rate [l/min] ¹⁾	Spin-on filter	h₂ [mm]	Service indication	Weight approx. [kg]
67 612 62 146	1	120	W 11 102	-	-	4.1
67 612 62 176	2	120	W 11 102	46	optical	4.2
67 612 62 166	3	120	W 11 102	62	electrical	5.2

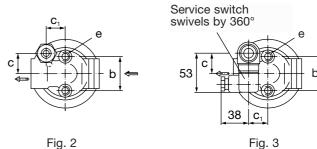
¹⁾ Flow rate values are only valid for liquids with 36 mm²/sec and flow resistance according to the diagram on page 40.

Part No.	Fig.	Nom. flow rate	Spin-on filter		Dimensions in mm and inches								Service indication	Weight approx. [kg]
		[l/min] ³⁾		а	b	С	C 1	d ₁ ²⁾	d ₂	h	h₁	h ₂		
67 512 62 106	1	120	2x W 962/2	200	_	47.5	_	G 1	93	275	30	-	_	2.8
67 512 62 136	2	120	2x W 962/2	200	40	43	47.5	G 1	93	275	30	46	optical	2.8
67 512 62 126	3	120	2x W 962/2	200	40	43	47.5	G 1	93	275	30	62	electrical	4.2
67 625 62 106 ¹⁾	1	180	2x W 11 102	270	_	70	_	G 11/2	108	337	35	_	_	4.6
67 625 62 116 ¹⁾	2	180	2x W 11 102	270	45	65	70	G 11/2	108	337	35	46	optical	4.8
67 625 62 126 ¹⁾	3	180	2x W 11 102	270	45	65	70	G 11/2	108	337	35	62	electrical	4.7

¹⁾ Filters supplied without release cam.


²⁾ Other threads upon request.


³⁾ Flow rate values are only valid for liquids with 36 mm²/sec and flow resistance according to the diagram on page 40.


Nominal pressure 35/25/20 bar (3.5/2.5/2.0 MPa)

Characteristics

Flow resistance as per ISO 3968 at 36 mm²/sec.

Part No.	Fig.	Nominal flow rate	Spin-on filter			Diı	mensi	ons in r	mm an	ıd inch	es			Service indication	Weight approx.
		[l/min] ³⁾		а	b	С	C 1	d ₁ 1)	d_2	е	h	h₁	h ₂		[kg]
Operating press	sure (35 bar (3.5	МРа)												
67 403 62 246	1	20	WD 724/3	90	40	_	_	G 1/2	76		192	22	_	_	0.9
Operating press	sure 2	25 bar (2.5	MPa)							deep					
67 502 62 246	1	25	WD 920	90	40	_	_	G 1/2	93		149	22	-	_	0.73
67 502 62 216	2	25	WD 920	90	40	21.5	24	G 1/2	93	16	149	22	46	optical	0.83
67 502 62 206	3	25	WD 920	90	40	21.5	24	G 1/2	93	œ́	149	22	62	electric.	0.83
67 504 62 436	1	40	WD 940	90	40	_	_	G 1/2	93	Σ	196	22	_	_	1.3
67 504 62 456	2	40	WD 940	90	40	21.5	24	G 1/2	93		196	22	46	optical	1.4
67 504 62 446	3	40	WD 940	90	47.5	21.5	24	G 1/2	93		196	22	62	electric.	1.4
67 504 62 426	1	35	WD 940/2	95	47.5	_	_	G 1	93		203	25	-	_	0.87
67 504 62 416	2	35	WD 940/2	95	47.5	28.5	26	G 1	93		203	25	46	optical	0.97
67 504 62 406	3	35	WD 940/2	95	47.5	28.5	26	G 1	93		203	25	62	electric.	0.97
67 506 62 756	1	70	WD 962	95	47.5	_	_	G 3/4	93		271	25	_	_	2.7
67 506 62 696	1	70	WD 962	95	47.5	_	_	G1	93	Q	271	25	_	_	2.7
67 506 62 656	2	70	WD 962	95	47.5	28.5	26	G1	93	deep	271	25	46	optical	2.8
67 506 62 646	3	70	WD 962	95	47.5	28.5	26	G1	93	20 (271	25	62	electric.	2.8
Operating press	sure 2	20 bar (2.0	MPa)							10, 2					
67 708 62 146 ²⁾	1	95	WD 1374	135	56	_	_	G 11/4	136	M 1	246	28	_	-	3.0
67 708 62 156 ²⁾	2	95	WD 1374	135	56	30	26	G 11/4	136	2	246	28	46	optical	3.1
67 708 62 166 ²⁾	3	95	WD 1374	135	56	30	26	G 11/4	136		246	28	62	electric.	3.1
67 716 62 216	1	180	WD 13 145	135	56	_	_	G 11/4	136		371	28	-	_	3.4
67 716 62 226	2	180	WD 13 145	135	56	30	26	G 11/4	136		371	28	46	optical	3.5
67 716 62 236	3	180	WD 13 145	135	56	30	26	G 11/4	136		371	28	62	electric.	3.5

¹⁾ Other threads upon request.

²⁾ Without bypass valve.

³⁾ Flow rate values are only valid for liquids with 36 mm²/sec and flow resistance according to the above diagram.

Nominal pressure 25/20 bar (2.5/2.0 MPa)

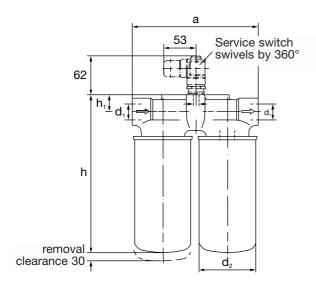


Fig. 1

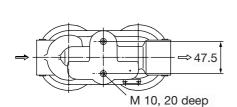


Fig. 1.1

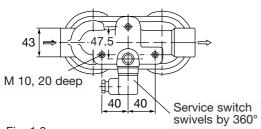
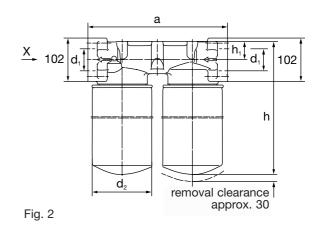
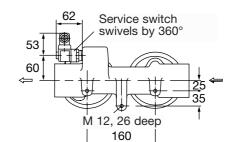
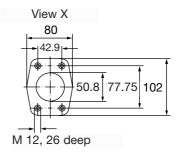





Fig. 1.2

Part No.	Fig.	Nominal flow rate [l/min] ³⁾	Spin-on filter	Dime	nsions	in mm	and in	nches		rating ssure [MPa]	Service indication	Weight approx. [kg]
				а	d ₁ ²⁾	d_2	h	h₁				
67 512 62 156	1.1	120	2 x WD 962	200	G 1	93	277	30	25	2.5	-	4.1
67 512 62 166	1.2	120	2 x WD 962	200	G 1	93	277	30	25	2.5	optical	4.2
67 512 62 176	1.2	120	2 x WD 962	200	G 1	93	277	30	25	2.5	electrical	4.2
67 730 63 126	2	360	2 x WD 13 145	320	SAE ¹⁾	136	402	42	20	2	_	6.8
67 730 63 116	2	360	2 x WD 13 145	320	SAE ¹⁾	136	402	42	20	2	optical	6.9
67 730 63 106	2	360	2 x WD 13 145	320	SAE ¹⁾	136	402	42	20	2	electrical	6.9
67 730 62 296	2	360	2 x WD 13 145	320	G 2	136	402	42	20	2	_	6.8
67 730 62 266	2	360	2 x WD 13 145	320	G 2	136	402	42	20	2	optical	6.9
67 730 62 256	2	360	2 x WD 13 145	320	G 2	136	402	42	20	2	electrical	6.9

¹⁾ Available upon request: 1 counterflange (with 4 screws and 4 spring washers), Part No. 22 078 21 101.

²⁾ Other threads upon request.

³⁾ Flow rate values are only valid for liquids with 36 mm²/sec and flow resistance according to the diagram on page 43.

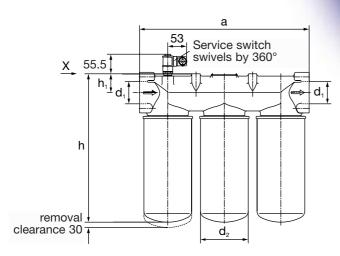
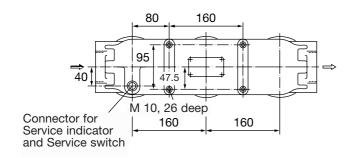
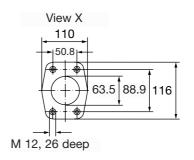
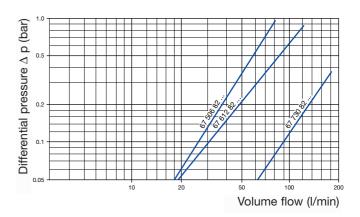




Fig. 1

Part No.	Fig.	Nominal flow rate [I/min] ¹⁾	Spin-on filter	a	Dimer	sions d ₂	in mm	h₁	pres	rating ssure [MPa]	Service indication	Weight approx. [kg]
67 750 62 106	1	540	3 x WD 13 145	480	SAE	136	424.5	53.5	20	2	-	10.2
67 750 62 116	1	540	3 x WD 13 145	480	SAE	136	424.5	53.5	20	2	optical	10.2
67 750 62 126	1	540	3 x WD 13 145	480	SAE	136	424.5	53.5	20	2	electrical	10.2

¹⁾ Flow rate values are only valid for liquids with 36 mm²/sec and flow resistance according to the diagram on page 43.

MANN In-line filters, selectable duplex


Nominal pressure 25/20/10 bar (2.5/2.0/1.0 MPa)

Switching filter halves allows maintenance of the filter without turning off the unit.

h d₁ removal clearance 30

Characteristics

Flow resistance as per ISO 3968 at 36 mm²/sec.

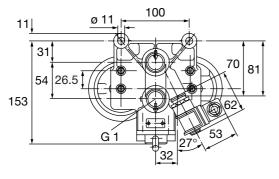


Fig. 1

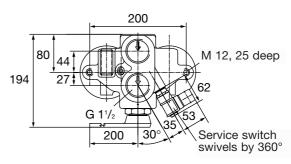
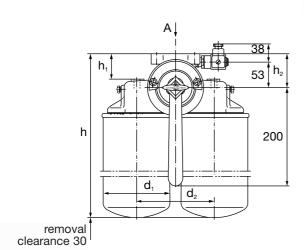
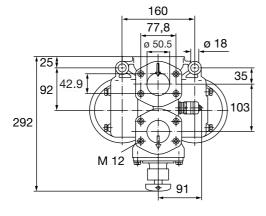


Fig. 2


Part No.	Fig.	Nominal flow rate ²⁾ [I/min]	Spin-on filter		Dimen	sions	in mm			rating ssure [MPa]	Service indication	Weight approx. [kg]
				d ₁ d ₂ h h ₁ h ₂								
67 506 82 176 ³⁾	1	80	2 x WD 962	93	102	294	22	50	25	2.5	_	4.3
67 506 82 166	1	80	2 x WD 962	93	102	294	22	50	25	2.5	optical	4.4
67 506 82 136	1	80	2 x WD 962	93	102	294	22	50	25	2.5	electrical	4.4
67 612 82 116	2	120	2 x W 11 102 ¹⁾	108 130 373 53 71				10	1	_	7.3	
67 612 82 146	2	120	2 x W 11 102 ¹⁾	108	130	373	53	71	10	1	electrical	7.3


¹⁾ With non-return valve.

²⁾ The flow rates indicated apply to liquids with a viscosity of 36 mm²/sec. (cSt) given a flow resistance of 0.4 to 0.6 bar (40 to 60 KPa). Nominal flow rate of a filter half.

³⁾ Selector lever SW 24, Part No. 02 086 01 024.

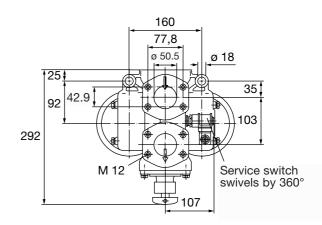
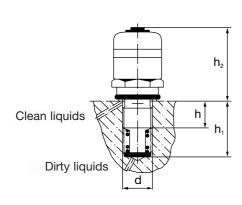


Fig. 2

Part No.	Fig.	Nominal flow rate ²⁾ [I/min]	Spin-on filter	d₁	Dimer	sions h	in mm	h ₂	'	rating ssure [MPa]	Service indication	Weight approx. [kg]
67 730 82 106 ¹⁾	1	180	2 x WD 13 145	136	160	424	52	70	20	2	-	9.7
67 730 82 126 ¹⁾	1	180	2 x WD 13 145	136	160	424	52	70	20	2	optical	9.8
67 730 82 116 ¹⁾	2	180	2 x WD 13 145	136	160	424	52	70	20	2	electrical	9.8


¹⁾ Available upon request: 1 counterflange (with 4 screws and 4 spring washers), Part N° 22 078 21 101.
2) The flow rates indicated apply to liquids with a viscosity of 36 mm²/sec. (cSt) given a flow resistance of 0.4 to 0.6 bar (40 to 60 KPa). Nominal flow rate of a filter half.

MANN Service indicators

For In-line and high-pressure filters

MANN Service indicators signal that the filter element is clogged and needs servicing. A red signal appears in the display window. Permissible operating temperature: 120 °C.

Part No.	Di d	mensions ir	n mm	h ₂		rating ssure [MPa]		ching sure [KPa]
59 020 79 202	M 18x1.5	22	36	46	25	2.5	1.8	180
59 020 79 212	M 10x1	16	_	44	25	2.5	1.8	180
59 020 79 315	M 24x2	19	44.5	44	400	40	5	500

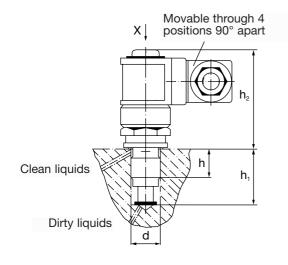
MANN Service indicators

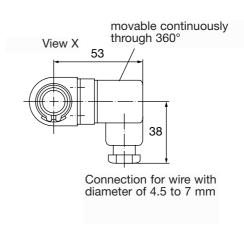
For In-line and high-pressure filters

When the time has come for service, the solenoid switch activates a signal device (e.g. pilot lamp or buzzer) or a switch-off device.

Operating

temperature: max. 120 °C


• Switch type: make/break contact


Breaking voltage: max. 220 V

Rupturing capacity: max. 12 W/18 VA

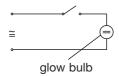
• Inrush current: max. 0.8 A

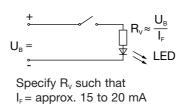
• Protection: IP 65 protective insulation

Part No.	Di	mensions i	n mm		•	erating essure [MPa]	Switc press [bar]	
	d	h						
59 010 79 202	M 18x1.5	22	36	62.5	25	2.5	1.8	180
59 010 79 305	M 24x2	19	59.5	61	400	40	5	500
59 010 79 315 ¹⁾	M 24x2	19	57.5	61	400	40	5	500
59 010 79 405	M 18x1.5	7.5	30	62.5	220	17.5	5	500

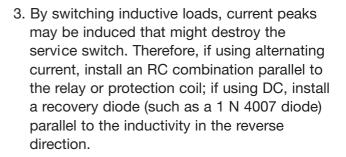
¹⁾ With opening pressure for bypass valve of 7 ± 0.9 bar.

Contact

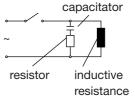

Service switches

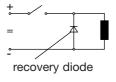

For In-line and high-pressure filters

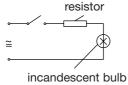
Recommendations for electrical installation of service switches


Each service switch is equipped with a highquality relay (reed contact). In order to ensure trouble-free operation, observe the following:

1. We recommend using a low voltage neonglow bulb or LED for electric/optical display. Both can be switched on and off directly without spark arrestors.




2. Incandescent bulbs require a very high switch-on current compared to their operating current. Therefore, select the bulb and a series resistor in such a way that the switch's maximum rating (refer to plague on unit) is not exceeded when it is turned on. We recommend selecting the series resistor in such a way that the current reaching the switch is still under the switch's peak switchon current level before counting the incandescent bulb. That protects it completely against overload; it does mean, however, that the bulb receives only undervoltage.



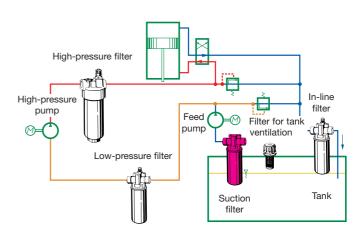
By dimensioning the sparkarresting devices, observe any guidelines issued by the manufacturer of the protection coil or relay.

In neither case is it permissible to exceed the switch's maximum rating (refer to plaque on unit).

MANN Suction filters

MANN Suction filters ...

Assembly and maintenance

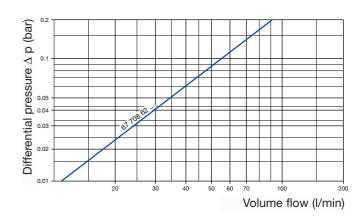

The in-line suction filters are installed in pipelines (see dimension table for threads). The maintenance is limited to the replacement of the clogged filter. The necessity of servicing can be indicated by means of a pressure measuring device or service switch.

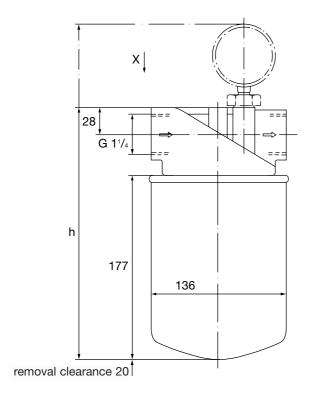
MANN Suction filters are used primarily in hydraulic circuits.

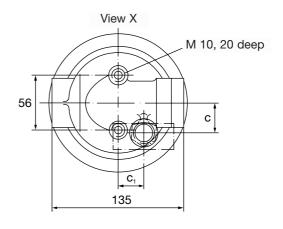
Design and operation

The filters consist of a filter head with two threads, mounting holes and a MANN micro-Top spin-on filter.

MANN Filters in hydraulic circuits


Technical data


Filter fineness:	12 μm 50% fractional separation efficiency (single pass) 30 μm 99% fractional separation efficiency (single pass) Other filter fineness upon request
Nominal flow rate:	60 I/min
Version with bypass valve available	33 William
	0.0 (/.00 (/D-)
Operating pressure:	-0.8 bar (-80 KPa)
Operating temperature:	max. 120 °C
Material:	Filter head made of cast aluminium
Service indicator:	Indication range: -1/+0.6 bar
Service switch:	Switching at a differential pressure
	of -0.5 \pm 0.2 bar (-50 \pm 20 KPa)
	Breaking voltage max. 42 V ≅
	Inrush current: 1 A
	Rupturing capacity: max. 12 W
	Switch type: make contact


... for in-line installation

Characteristics

Flow resistance as per ISO 3968 at 36 mm²/sec.

Part No. Complete filter	Nominal flow rate	Spin-on filter	Dir	mensions in r	Service indicator	
	[l/min]		С	C 1	h	
67 708 62 186	60	W 1374/2	-	-	246	-
67 708 62 206	60	W 1374/2	30	26	336	optical
67 708 62 266	60	W 1374/2	30	26	330	electrical
67 708 62 276	60	W 1374/4 ¹⁾	_	_	246	_
67 708 62 286	60	W 1374/4 ¹⁾	30	26	336	optical

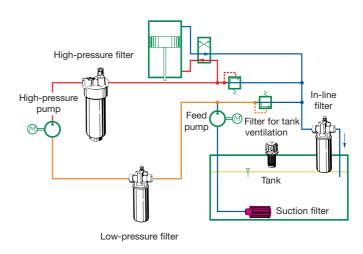
 $^{^{\}rm 1)}$ Spin-on filter with bypass valve, opening pressure 0.2 + 0.15 bar (20 + 15 KPa). Other threads upon request.

MANN Suction filters

Star-pleated strainer design

MANN Star-pleated strainer filters are used primarily for suction operation in hydraulic tanks.

Assembly and maintenance


The filter is screwed directly onto the suction socket of the feed pump or a similar suction pipe. The filter maintenance is carried out latest when an oil change becomes necessary.

Technical data

 Filter fineness: 100 µm (other fineness upon request)
 Strainer web: Phospor bronze

MANN Filters in hydraulic circuits

Part No.	Nominal flow rate [l/min] ¹⁾	Filtering surface [cm²]		Weight approx. [kg]				
			d₁	d ₂	h₁	h ₂	SW	
62 300 53 551	20	170	61	G 1/2	55	42	27	0.15
62 300 53 571	30	310	61	G 1/2	84	71	27	0.20
62 300 53 541	30	310	61	G 3/4	87	70.5	36	0.25
62 500 53 411	45	460	87	G 1	85	63.5	41	0.50
62 501 53 281	60	650	87	G 1	105	84	41	0.70
62 501 53 291	80	900	87	G 1	155	134	41	0.75
62 602 53 251	120	1 400	110	1.10				
62 602 53 261	150	1 800	110	G 11/2	205	160	60	1.20

¹⁾ Flow rates apply to liquids with a viscosity of 36 mm²/sec. (cSt) at a flow resistance < 0.1 bar (10 KPa).

MANN Picolino

Overview Catalogue Contact Products Quick search for product

Compact air cleaners for high requirements

MANN Picolino. The new series of compact air cleaners made of plastic.

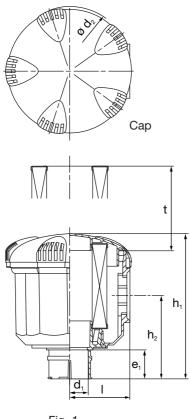
Application areas

 For two-way ventilation of gearboxes and tanks for liquids (also available with pressure regulation)

 As a silencer cleaner for applications where low noise is a requirement

Technical data

- Nominal flow rate: 0.15 to 3.2 m²/min
- Material: impact-resistant polyamide for temperatures from -20 °C to +120 °C


Your advantages in a glance

- Economic
- Short delivery time
- Short manufacturing time for cleaners with your logo
- Free of metal
- Easy to recycle
- Easy to service and assemble

Picolino intake air filter (with two-way ventilation)

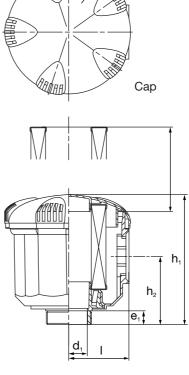
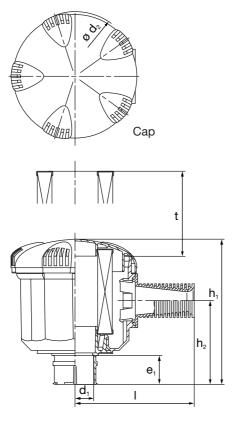


Fig. 1

Fig. 2

Part No.	Fig.	Nominal flow rate		Dimer	isions ir	n mm ai	nd inche	es		Replacement MANN micro-	Clamp (not included in
		[m³/min]¹)	d₁	d ₂	e 1	h₁	h ₂	I	t		extent of supply) ³⁾
44 010 72 996	2	0.15	G 1/2 ⁴⁾	58	14	61	34	27	30	C 410	_
44 010 72 997	2	0.15	G ³ /8 ⁴⁾	58	11	61	34	27	30	C 410	_
44 010 72 999	2	0.2	M 18x1.5 ²⁾	58	10	61	34	27	30	C 410	-
44 010 77 999	1	0.25	35	58	23	73	64	27	30	C 410	02 018 01 192
44 020 72 996	2	0.2	G 1/2 ⁴⁾	68	14	62	34	31	30	C 420	-
44 020 72 997	2	0.2	G 3/8 ⁴⁾	68	11	62	34	31	30	C 420	_
44 020 72 999	2	0.25	M 18x1.5 ²⁾	68	10	62	34	31	30	C 420	-
44 020 77 999	1	0.3	35	68	23	74	46	31	30	C 420	02 018 01 192
44 030 72 999	2	0.7	G ³ / ₄ ⁴⁾	102	15	94	45	48	68	C 630	-
44 030 77 997	1	1.4	40	102	25	116	67	48	68	C 630	02 018 01 194
44 030 77 998	1	1.2	30	102	23	116	67	48	68	C 630	02 018 01 192
44 030 77 999	1	0.6	20	102	23	116	67	48	68	C 630	02 018 01 190
44 040 72 999	2	2.0	G 1 ¹ / ₄ ⁴⁾	145	19	131	71	69	79	C 1140	-
44 040 77 996	1	3.0	71	145	25	136	76	69	79	C 1140	02 018 01 196
44 040 77 997	1	3.0	60	145	25	136	76	69	79	C 1140	02 018 01 195
44 040 77 998	1	2.7	52	145	25	136	76	69	79	C 1140	02 018 01 194
44 040 77 999	1	2.0	40	145	25	136	76	69	79	C 1140	02 018 01 194
44 050 72 999	2	2.2	G 1 ¹ / ₄ ⁴⁾	181	19	188	112	86	135	C 1250	_
44 050 77 996	1	3.2	71	181	25	193	117	86	135	C 1250	02 018 01 196
44 050 77 997	1	3.2	60	181	25	193	117	86	135	C 1250	02 018 01 195
44 050 77 998	1	3.0	52	181	25	193	117	86	135	C 1250	02 018 01 194
44 050 77 999	1	2.2	40	181	25	193	117	86	135	C 1250	02 018 01 194


¹⁾ Nominal flow rate relating to 15 mbar flow resistance. Flow rate value dependant on the cross-section of the clean air adapter.

²⁾ Male thread.

³⁾ On request filter supplied with fitted clamp strap.

⁴⁾ Female thread.

Picolino filter silencer

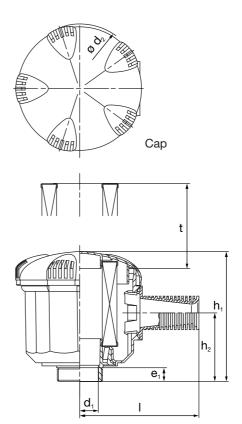


Fig. 2

Part No.	Fig.	Nominal flow rate		Dimensions in mm and inches								Clamp (not included in
		[m³/min]¹)	d₁	d_2	e ₁	e ₂	h₁	h ₂	I	t	MANN micro- Top filter element	,
44 010 82 996	2	0.15	G 1/2 ⁴⁾	58	14	29	61	34	56	30	C 410	-
44 010 82 997	2	0.15	G ³ /8 ⁴⁾	58	11	29	61	34	56	30	C 410	_
44 010 82 999	2	0.15	M 18x1.5 ²⁾	58	10	29	61	34	56	30	C 410	_
44 010 87 999	1	0.16	35	58	23	29	73	46	56	30	C 410	02 018 01 192
44 020 82 996	2	0.2	G 1/2 ⁴⁾	68	14	29	62	34	60	30	C 420	_
44 020 82 997	2	0.2	G 3/8 ⁴⁾	68	11	29	62	34	60	30	C 420	_
44 020 82 999	2	0.15	M 18x1.5 ²⁾	68	10	29	62	34	60	30	C 420	_
44 020 87 999	1	0.18	35	68	23	29	74	46	60	30	C 420	02 018 01 192
44 030 82 999	2	0.6	G 3/4 ⁴⁾	102	15	47	94	45	95	68	C 630	_
44 030 87 997	1	0.9	40	102	25	47	116	67	95	68	C 630	02 018 01 194
44 030 87 998	1	0.7	30	102	23	47	116	67	95	68	C 630	02 018 01 192
44 030 87 999	1	0.6	20	102	23	47	116	67	95	68	C 630	02 018 01 190
44 040 82 999	2	1.8	G 1 ¹ /4 ⁴⁾	145	19	55	131	71	79	79	C 1140	_
44 040 87 996	1	2.0	71	145	25	55	136	76	79	79	C 1140	02 018 01 196
44 040 87 997	1	2.2	60	145	25	53	136	76	116	79	C 1140	02 018 01 195
44 040 87 998	1	1.9	52	145	25	53	136	76	116	79	C 1140	02 018 01 194
44 040 87 999	1	1.5	40	145	25	53	136	76	116	79	C 1140	02 018 01 194
44 050 82 999	2	2.8	G 1 ¹ / ₄ ⁴⁾	181	19	55	188	112	133	135	C 1250	_
44 050 87 996	1	3.0	71	181	25	55	193	117	133	135	C 1250	02 018 01 196
44 050 87 997	1	3.0	60	181	25	59	193	117	133	135	C 1250	02 018 01 195
44 050 87 998	1	2.6	52	181	25	59	193	117	133	135	C 1250	02 018 01 194
44 050 87 999	1	2.0	40	181	25	59	193	117	133	135	C 1250	02 018 01 194

¹⁾ Nominal flow rate relating to 15 mbar flow resistance. Flow rate value dependant on the cross-section of the clean air adapter.

²⁾ Male thread.

³⁾ On request filter supplied with fitted clamp strap.

⁴⁾ Female thread.

MANN Filters for two-way ventilation in hydraulic systems

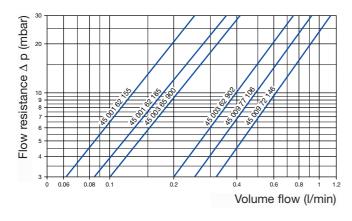
MANN Pico air filters ...

MANN Pico air filters are single-stage air filters used mainly for the two-way ventilation of liquid tanks.

Design

The filtration is ensured by a MANN micro-Top filter element. The MANN Pico air filter can be supplied with integrated pressure control valve (see fig. 4 on page 61). Provided that the configuration is correct, air exchange in the tank will be almost completely avoided and air carrying oil will not escape.

Assembly


The filters must be installed in an area of the tank where the dust level is low. To ensure perfect operation, position them vertically (± 15° variation). Fasten them with a clamping socket, plug or bayonet type cap, flanged or threaded connection.

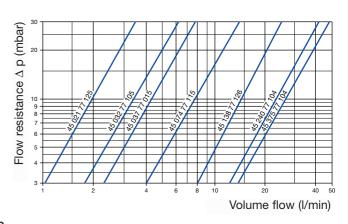
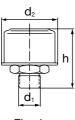
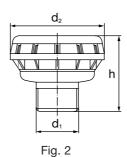
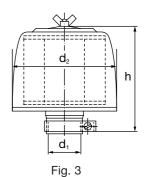

Maintenance

Fig. 1, 2 and 4 (Page 61): On maintenance, the complete filter is replaced by a new one.


Fig. 3 (Page 61): The MANN micro-Top filter element is replaced after the hood has been removed.


Characteristics



... for hydraulic systems


Fig.	1
------	---

Part No.	Fig.	Nominal flow rate [m³/min]	Dimensio	ons in mm ar	nd inches	Weight approx. [kg]	Respective MANN micro-Top filter element
45 001 62 155	1	_	M 14x1.5	45	47	0.05	-1)
45 001 62 185	1	-	M 18x1.5	45	47	0.08	-1)
45 003 65 900	2	-	35	80	65	0.06	-1)
45 003 62 902	2	-	G 3/4	80	73.5	0.08	-1)
45 009 72 146	3	0.5	M 26x1.5	98	110	0.3	C 75/4
45 009 77 106	3	0.5	20	98	110	0.3	C 75/4
45 021 77 125	3	2.0	40	132	120	0.5	C 1112
45 032 77 105	3	3.5	52	132	152	0.65	C 1132
45 037 77 015	3	4.5	60	170	175	1.1	C 1337
45 074 77 115	3	8.0	80	208	185	1.3	C 1574
45 138 77 126	3	15.0	100	283	200	7.0	C 21 138/1
45 240 77 104	3	23.0	140	318	302	9.0	C 26 240
45 375 77 104	3	32.0	180	396	285	11.0	C 30 375

¹⁾ On maintenance, the complete filter is replaced by a new one.

MANN Pico air filters with pressure control valve

Part No.	Nominal flow rate	Opening pressure	Weight approx.
	[m³/min]	[bar] [KPa]	[kg]
45 003 62 900	0.2	0.85 85	0.1
45 003 62 901	0.2	0.35 35	0.1

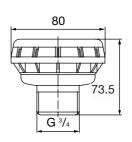


Fig. 4

Filters for two-way ventilation with intake strainer

MANN Filters for two-way ventilation are used in liquid tanks for pressure compensation.

Design

Vent filter and intake strainer are combined. The filter element is either a foam insert, star-folded paper or oil-wetted steel net.

Assembly and maintenance

The filters must be installed in an area of the tank where the dust level is low. They may be fastened by a clamping socket, plug or bayonet type cap, flanged or threaded connection. They can be cleaned when they become noticeably dirty.

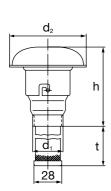


Fig. 1

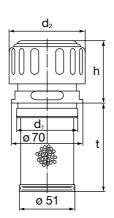


Fig. 2

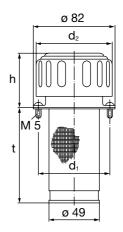


Fig. 3

Part No.	Fig.	Nominal flow rate [m³/min¹)]	Di	Dimensions in mm and inches			
			d₁	d ₂	h	t	
41 004 62 142	1	0.4	M 33x1.5	76	78	100	0.25
41 004 62 232	1	0.4	G1B	76	78	95	0.25
43 010 62 100	2	0.7	G 2	77	64	88	0.4
43 010 63 100 ²⁾	3	0.7	71.5	77	54	96	0.4

¹⁾ Given a flow resistance of Δ p = 10 mbar (1 KPa).

^{2) 6} self-tapping screws (for holes of 4.5 mm diameter) to fasten the filter and a seal are included as standard.

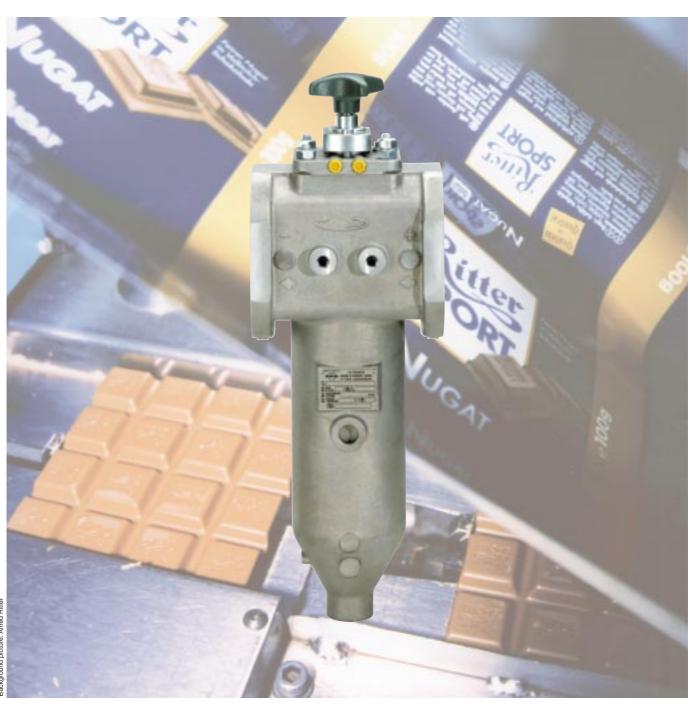


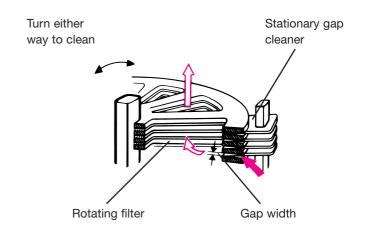
Plate gap-type, wire gap-type and gap-type tube filters are particularly suitable for the filtration of heavily contaminated fluids of high and low viscosity, such as fuels, lube oils, paints, polyhydric alcohols, isocyanate, cooling lubricants, etc. They are used in almost every industrial branch for numerous applications, such as:

- steam and hydraulic engines
- pumps
- hydraulic systems
- machine tools
- gears
- medium to large-size internal-combustion engines
- food industry
- cleaning of water and fluids in the pharmaceutical processing industry, etc.

MANN gap-type filters can be cleaned during service; they offer simple maintenance and particularly long service life. All the gap-type filters work without chemicals, i.e. they have no harmful impact on the environment.

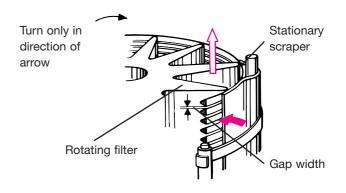
Gap-type filters are used in full and return flows. The fluid passes through the filter inserts from the outside to the inside.

The filter rating is determined by the gap width. MANN gap-type filters can also be combined with MANN in-line filters (paper filters serving as highly efficient fine filters) to make multi-stage filters. You can find in-line filters from page 37 onwards.

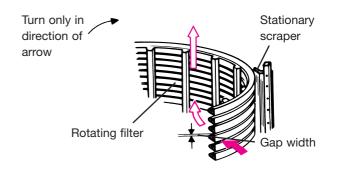

Heatable gap-type filters for special applications are also available, as well as electronic controllers for automatic operation.

The filter housings can be made of carbon steel, grey cast iron, cast aluminium or nickel chromium steel. Special models can be supplied on request.

Fill out and fax us the form on page 3: We will configure the filter best suited to your requirements.


MANN Plate Gap-type filters for gap width ≥ 0.1 mm

The plate gap-type filter insert consists of steel discs which are piled up on a central pin. The gap width between the discs is determined by spacers between the discs. A stationary gap cleaner runs through every gap. As the fluid flows between the discs, the dirt particles are deposited on the surface and in the gaps. By turning the filter insert with the handle, the dirt gathers on the row of gap cleaners and falls into the sludge collection chamber where it is discharged by opening a ball valve.


MANN Wire Gap-type filters for gap width ≥ 0.03 mm

The wire gap-type filter insert consists of a non-rusting, high tensile steel wire wound in a spiral around an aluminium frame. The exact position of the steel wire on the frame provides for equal gaps. As the liquid to be filtered flows through the filter insert the dirt particles are deposited in the gaps. By turning the filter insert with the handle, the dirt is removed by a stationary scraper and then falls down into the sludge collection chamber where it is discharged by opening a ball valve.

MANN Gap-type Tube filter for gap width ≥ 0.03 mm

The gap-type tube filter insert consists of a wire wound around longitudinal rods welded together at every crossing point. The longitudinal rods and wire are made of non-rusting, high tensile steel. The exact position of the steel wire on the longitudinal rods provide for equal gaps. As the liquid to be filtered flows through the filter insert the dirt particles are deposited in the gaps. By turning the filter insert with the handle, the dirt is removed by a stationary scraper and then falls

down into the sludge collection chamber where it is discharged by opening a ball valve.

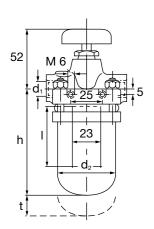
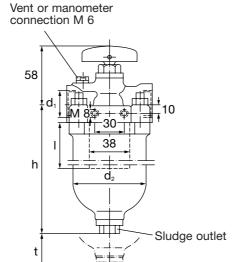

Applications and technical data

	Plate gap-type filter	Wire gap-type filter	Gap-type tube filter
Particulary suitable for	highly viscous fluids	fuels and lubricants	aqueous and/or abrasive fluids
Main range of application (industrial branches)	reaction injection moulding machines	aggregates (gears, engines, etc.)	industrial installations
Gap width	100 to 800 μm	30 to 500 μm	30 to 2 000 μm
Nominal flow rate at 1-10 mm ² /s	up to 45 m³/h	up to 45 m³/h	up to 800 m³/h
Material of housing	Al, grey cast iron, SS	Al, grey cast iron, SS	AI, grey cast iron, SS
Material of filter inlet	Al, grey cast iron, SS	Al, grey cast iron, SS	Al, grey cast iron, SS
Operating pressure ¹⁾	10 to 40 bar (1 to 4 MPa)	10 to 40 bar (1 to 4 MPa)	10 to 40 bar (1 to 4 MPa)
Working temperature ¹⁾	120 °C	120 °C	120 °C
Operation	manual or electric ²⁾	manual or electric ²⁾	manual or electric ²⁾
Sludge outlet	yes	yes	yes
Connections	metric	thread, pipe thread and	I flange
Controller and monitoring	optional	optional	optional

Higher upon request.
 Explosion-protection upon request.

MANN Plate gap-type filters


Nominal pressure 10/40 bar (1.0/4.0 MPa)

58

Fig. 1 Filter bowl removable from the bottom

66

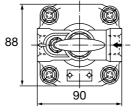
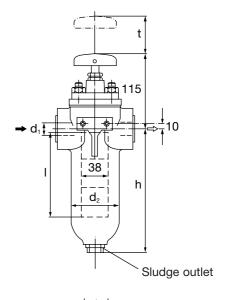



Fig. 2 Filter bowl removable from the bottom

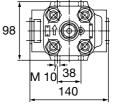


Fig. 3 Filter insert removable from the top

Dimensions and Part Numbers

		Gap 9 0.1 mm x = 3	width 0.2 mm x = 5	Dimen	sions in	M wo pre:	Weight approx.				
Part No.	Fig.	Nom. flow	rate ¹⁾ [l/h]	d₁	d ₂	h	I	t	[bar]	[MPa]	[kg]
51 207 6x 021	1	900	_	M 14x1.5	47	125	70	85	10	1	0.9
51 305 6x 041	2	1 400	3 500	M 22x1.5	77	142	50	90	40	4	2.4
51 305 6x 051	2	1 400	3 500	G 1/2	77	142	50	90	40	4	2.4
51 305 6x 061	2	1 400	4 000	G 3/4	77	142	50	90	40	4	2.4
51 310 6x 041	2	2 600	3 500	M 22x1.5	77	192	95	140	40	4	2.8
51 310 6x 051	2	2 600	3 500	G 1/2	77	192	95	140	40	4	2.8
51 310 6x 061	2	2 600	4 500	G ³ / ₄	77	192	95	140	40	4	2.8
51 310 7x 101	3	2 600	5 000	G 1	78	180	95	180	10	1	5.8
51 318 7x 101	3	5 000	5 000	G 1	78	295	180	280	10	1	8

¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δp) of 0.2 to 0.3 bar (20 to 30 KPa). For aqueous fluids or when a higher flow resistance is permissible, the indicated flow data may be exceeded.

MANN Plate gap-type filters

Nominal pressure 16/40 (1.6/4.0 MPa)

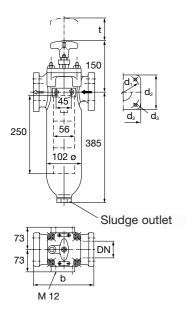


Fig. 1

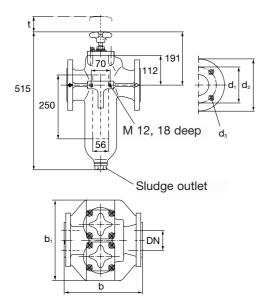


Fig. 2

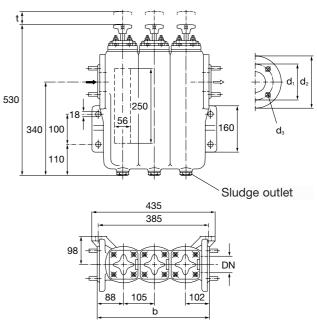
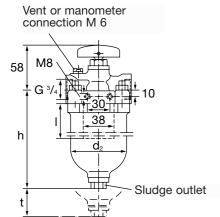


Fig. 3


Dimensions and Part Numbers

		Gap	width		[Dimensio		М				
		0.1 mm	0.2 mm									Weight
		x = 3	x = 5									approx.
Part No.	Fig.	Nom. flow	/ rate ¹⁾ [l/h]	b	d₁	d ₂	d₃	t	DN	[bar]	[MPa]	[kg]
51 525 7x 101	1	12 000	15 000	180	110	110	M 14	390	50	40	4	19.5
55 550 7x 251	2	24 000	30 000	290	145	220	18	390	65	16	1.6	42
55 575 7x 221	3	36 000	45 000	400	145	185	M 16	390	65	16	1.6	68

¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δp) of 0.2 to 0.3 bar (20 to 30 KPa). For aqueous fluids or when a higher flow resistance is permissible, the indicated flow data may be exceeded.

MANN Wire gap-type and gap-type tube filters

Nominal pressure 40 bar (4.0 MPa)

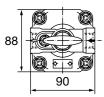


Fig. 1 Filter bowl removable from the bottom

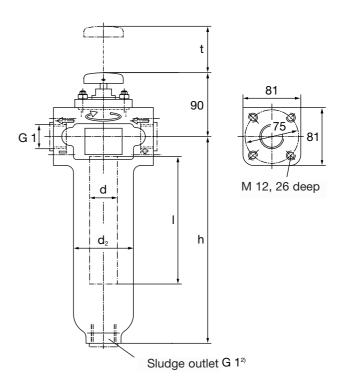


Fig. 2 Filter insert removable from the top

Dimensions and Part No.

Max. operating pressure: 40 bar (4 MPa)

Part No.	Fig.	0.03 mm x = 0	333 333					Weight approx. [kg]			
											. 0,
Wire gap-type filters											
53 410 6x 061	1	1 100	2 000	3 000	3 500	42	77	195	95	140	2.2
53 418 7x 101	2	2 100	3 900	5 000	5 000	42	84	289.5	165	260	4
Gap-type tube fiters											
54 310 6x 061	1	_	1 100	2 000	3 000	38	77	195	100	140	2.2
54 310 7x 164	2	_	1 100	2 000	3 000	38	84	180	100	200	3.2
54 318 7x 104	2	_	1 900	3 500	5 000	38	84	289.5	180	280	4.0

¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δp) of 0.2 to 0.3 bar (20 to 30 KPa). For aqueous fluids or when a higher flow resistance is permissible, the indicated flow data may be exceeded.

²⁾ Drain plug G1 (DIN 910), Part No. 01 436 16 000 and sealing ring Part No. 01 901 01 033, optional.

MANN Gap-type tube filters

Nominal pressure 10/40 bar (1.0/4.0 MPa)

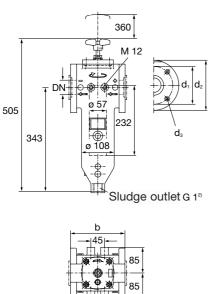


Fig. 1

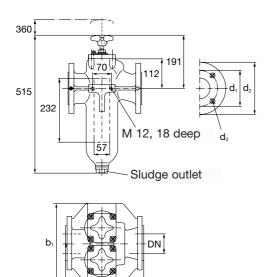
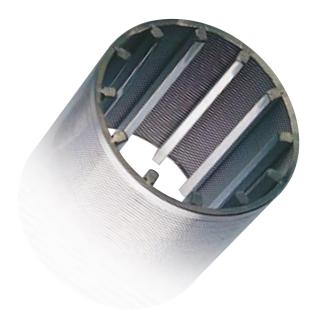
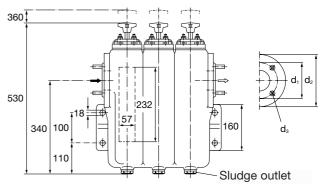




Fig. 2

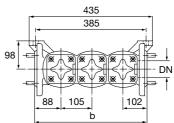
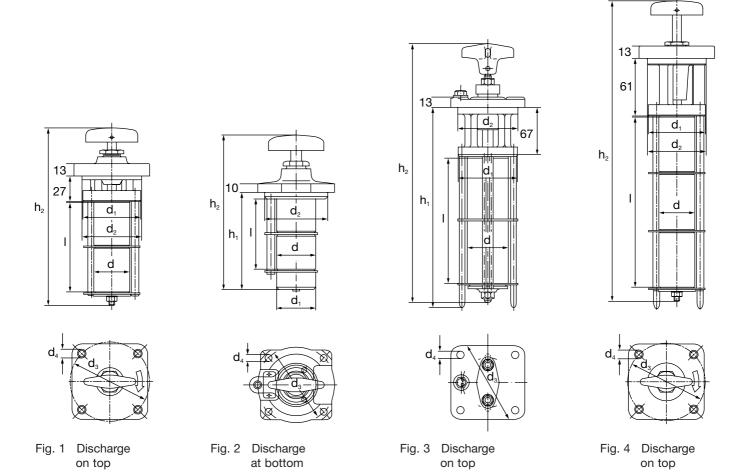


Fig. 3

Dimensions and Part Numbers


		Gap width			Dimensions in mm						Max.		
		0.05 mm	0.1 mm	0.2 mm						WO	rking	Weight	
		x = 1	x = 3	x = 5						pres	ssure	approx.	
Part No.	Fig.	Nominal flow rate ¹⁾ [I/h]			b	b₁	d₁	d ₂	d₃	DN	[bar]	[MPa]	[kg]
54 524 7x 101	1	4 000	10 000	15 000	180	-	125	165	M 16	50	40	4	10
54 548 7x 101	2	8 000	20 000	30 000	270	265	145	185	18	65	10	1	40
54 572 7x 101	3	12 000	30 000	45 000	400	_	145	185	M 16	65	10	1	65

¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δp) of 0.2 to 0.3 bar (20 to 30 KPa). For aqueous fluids or when a higher flow resistance is permissible, the indicated flow data may be exceeded.

²⁾ Drain plug G1 (DIN 910), Part No. 01 436 16 000 and sealing ring Part No. 01 901 01 033, optional.

MANN Plate gap-type filter inserts

Nominal pressure 10/40 bar (1.0/4.0 MPa)

Dimensions and Part Numbers

Max. working pressure: 10 bar (1 MPa)

40 bar (4 MPa) for filters 51 525 5x 121

										1		
		Gap	width	Dimensions in mm								
		0.1 mm	0.2 mm									Weight
		x = 3	x = 5									approx.
Part No.	Fig.	Nom. flow	/ rate ¹⁾ [I/h]	d	d₁	d ₂	d₃	d ₄	h₁	h ₂	I	[kg]
51 305 5x 051	1	1 400	4 000	38	62	63	84	9	92	143	50	1.0
51 310 5x 051	1	2 600	5 000	38	62	63	84	9	137	188	95	1.3
51 310 5x 061	4	2 600	5 000	38	61	62	82	8.5	172	233	95	1.3
51 315 5x 051	1	4 000	5 000	38	62	63	84	9	192	243	142	1.7
51 318 5x 061	4	5 000	5 000	38	61	62	82	8.5	257	318	180	1.9
52 204 5x 025	2	510	_	23	25	45	60	6.6	52	105	32	0.3
52 207 5x 021	2	900	_	23	25	45	60	6.6	90	140	70	0.4
52 305 5x 021	2	1 400	5 000	38	38	61	76	6.6	77	130	50	0.9
52 310 5x 021	2	2 600	5 000	38	38	61	76	6.6	121	176	95	1.3
52 315 5x 021	2	4 000	5 000	38	38	61	76	6.6	177	230	142	1.6
51 525 5x 121	3	12 000	15 000	56	82.5	82.5	108	11	352	432	250	5.4

¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δp) of 0.05 to 0.15 bar (5 to 15 KPa). For aqueous fluids or when a higher flow resistance is permissible, the indicated flow data may be exceeded.

Wire Gap-type / Gap-type tube filter inserts

Nominal pressure 40 bar (4.0 MPa)

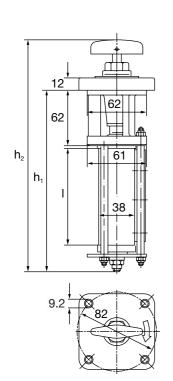
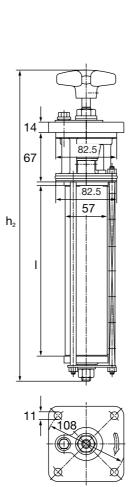
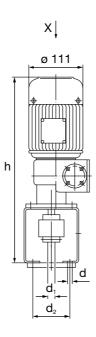



Fig. 1 Discharge on top

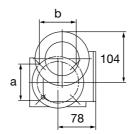
Dimensions and Part Numbers

Max. working pressure: 40 bar (4 MPa)


		0.03 mm x = 0	Gap 0.05 mm x = 1	width 0.1 mm x = 3	0.2 mm x = 5	Dime	ensions in	Weight approx. [kg]	
Part No.	Fig.		Nominal flow rate ¹⁾ [l/h] h_1 h_2 l						
Wire gap-type									
filter inserts									
53 417 5x 121	1	2 100	3 900	5 000	5 000	245	305	165	1.5
53 524 5x 041	2	3 400	6 300	13 500	15 000	326	420	234	4.8
Gap-type tube									
filter inserts									
54 310 5x 141	1	600	1 100	2 000	3 000	192	242	100	1.2
54 318 5x 101	1	900	1 900	3 500	5 000	272	322	180	1.5
54 524 5x 041	2	2 100	4 000	13 000	15 000	326	420	232	4.8

¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δp) of 0.05 to 0.15 bar (5 to 15 KPa). When contamination is not too heavy and a higher flow resistance is permissible, the indicated flow data may be exceeded.

Electrical drives for MANN Gap-type filters


For automatic filter cleaning during operation

Electrical drives increase the efficiency of the gap-type filters by automatically triggering the cleaning of the inserts at a preset frequency. The service life of the filter is prolonged. Upon request, MANN gap-type filters can be supplied with controllers and pressure transmitters. Refer to pages 74 and 75 for the MANN service indicators and switches.

Technical data

	Geared	motor
		with explosion
	Standard	protection
Voltage 50 Hz	210-240/36	65-420 V
Voltage 60 Hz	255-290/440-500 V	_
Frequency	50/60 Hz	50 Hz
Speed	1.84/2.2 1/min	1.84 1/min
Power	0.06 KW	0.09 KW
Current consump- tion	0.55/0.33 A	0.7/0.4 A
Enclosure	IP 55	IP 55
Insulation class	F	F
Explosion protection		EEX EII T4
Varnish	RAL 7031	RAL 7031
Special characteri-		with protection
stics		roof

Dimensions and Part Numbers

Geared motor standard Part No.	Geared motor with explosion protection	Used on filter	Dimensions in mm					
			h	d₁	d ₂	а	b	d
59 420 70 321	59 420 70 322	51 525 7x 54 524 7x 54 548 7x 54 572 7x 55 550 7x 55 575 7x	379 401 ¹⁾	16 16	ø 108 ø 108	76.4 76.4	76.4 76.4	11 11
59 420 70 301	59 420 70 302	51 3 6x 53 4 6x 54 3 6x	379 401¹)	9.5 9.5	ø 92 ø 92	65 65	65 65	9.3 9.3
59 420 70 331	59 420 70 332	51 3 7x 53 4 7x 54 3 7x	369 391 ¹⁾	9.5 9.5	ø 82 ø 82	58 58	58 58	9

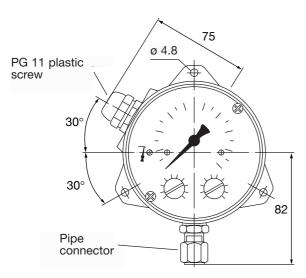
¹⁾ Dimensions of a geared motor with explosion protection.

Differential pressure gauges and service switches ...

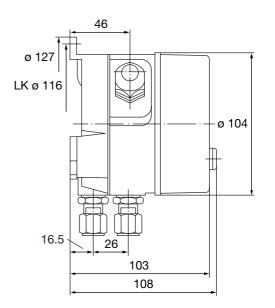
Manometer (variable)

Combination display and switching device for overpressure, low pressure and differential pressure.

The service switch is especially defined by:


- High repetitive accuracy of the switch points
- Long lifetime
- · High security against overload

Technical data


- Measuring range: 0...400 mbar to 0...25 bar
- Nominal pressure of the measuring system:
- Allowed ambient temperature range: -10 °C to +70 °C
- Alowed medium temperature: 70 °C
- Protection class: IP 54 accord. DIN 40 050
- Installation position: flexible
- Pressure chamber material: aluminium, aluminium with HARD COAT surface protection or nickel chromium steel 1.4305
- Measuring membrane material: NBR or Viton, depending on the application
- Compressed air connections: G 1/4 inch internal thread
- Electrical connections: permanently wired numbered cable

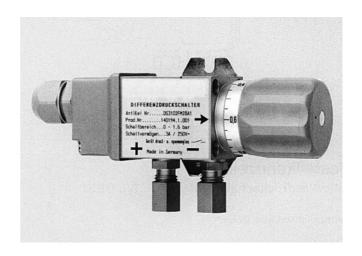
- Contact output: one or two micro switches, 1-way switch
- Switch point setting: standard value scale externally adjustable, smallest adjustable value approx. 5% of upper limit of effective range
- Switching hysteresis: approx. 2.5%
- U ~ max. = 250 V AC, I max. = 5 A, P max. = 250 VA U = max. = 30 V DC, I max. = 0.4 A,P max. = 10 W

Dimensions

Order no.: 26 000 91 891

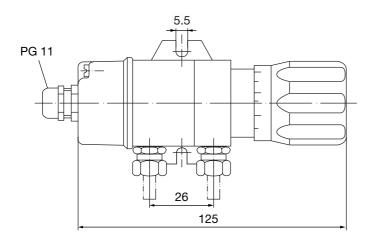
... for gap-type filters

Service switch (variable)


The differential pressure switch device is appropriate for all neutral mediums such as water for industrial use, water for heating systems, neutral gases, oils, etc.. Two-step control is possible via a steplessly settable switch point between 10 and 100% of the pressure range.

The service switch is especially defined by:

- High repetitive accuracy of the switch points
- Long lifetime
- High security against overload


Technical data

- Measuring range: 0...4 bar
- Max. static operating pressure: 16 bar
- Max. allowed ambient temperature: +80 °C
- Allowed medium temperature: +80 °C
- Pressure chamber material: brass
- Membrane material: NBR or Viton, depending on the application

- Compressed air connections: G 1/8 inch internal thread
- Electrical connections: permanently wired numbered cable
- Switching point: steplessly settable for 10 to 100% of pressure range

Dimensions

Order no.: 02 150 02 405

MANN AutoFluid Automatic backflushing filter

Clever, efficient, economical

The filtration of products and process fluids often demands the highest requirements from a filter system. The perfect and effective solution for these requirements defines the process reliability, the product quality and the running costs for the customer.

The new backflushable MANN AutoFluid sets new standards in the field of filtration of liquids regarding the filter efficiency and economy. And this is not the only reason why reputable companies such as VW and BASF successfully use it. MANN AutoFluid has proved itself with many varied applications and works precisely and reliably in continuous operation. In practice MANN AutoFluid has shown that in terms of efficiency and economy it is the superior solution compared to conventional automatic filters or non-automatic filter systems.

MANN AutoFluid is suitable for use in the following fields ...

- The paints industry
- The automobile industry
- · Municipal authorities
- · Chemicals
- · The food industry
- Machine tooling
- Pharmaceuticals
- · The cosmetics industry
- Environmental technology
- Metalworking industries
- · The paper industry
- · The oil industry
- Power stations

... for the filtration of:

- Paints
- Inks
- Cutting lubricants
- · Cooling water
- · Water for industrial use
- · Waste water
- Grease and wax
- Highly viscous materials such as creams, pastes
- · Cleaning agents
- · Mineral, synthetic and natural oils
- Fuel

MANN AutoFluid - a system with many advantages

- · Considerable reduction of running costs compared with other filter solutions
- Special valve control enables quick cleaning operations with minimal backflushing quantities and pressure loss
- Fully automatic operation
- Ideal adaptation to the application in question is possible
- Long service life
- · Exact separation capability through defined gap strainer geometry
- Filter elements resistant to high differential pressure

- "Easy-to-clean" characteristics enable an especially compact design with a comparably smaller filter surface area
- Robust and low-wear system

Innovative design

- Simple and quick servicing without special tools or special knowledge
- Easy to use operation of the control unit which is included in the scope of delivery
- · Variable and easy integration of the filter in existing production lines

High performance and ...

In the field, the MANN AutoFluid is not only gaining market share in classic applications for automatic filters. It is also increasingly making its presence felt in areas such as surface treatment technology or with paints, where bag, strainer, or layer filters are still often chosen to be the filter solution.

The extent of the success enjoyed by the MANN AutoFluid can best be seen through examples of satisfied customers:

Filtration of coolants on engine test benches

At a large world-famous car producer the MANN AutoFluid is used to filter water-glycol mixtures on engine test benches. To filter the coolants three MANN AutoFluid units are connected in parallel. In continuous operation it has proved itself against automatic filters from the competition to be the filter solution with the highest performance. Due to the good results, MANN AutoFluid has become the recommended solution for similar applications within this company.

Filtration of dispersion paints

Today, bag filters represent the common solution used for the filtration of highly viscous water-based dispersion paints. After a short time however, the viscoelasticity of the dispersion paints often causes the filter to block and therefore demands frequent manual work and regular changing of the filter bag.

An important European producer of dispersion paints therefore opted for the MANN AutoFluid with different gap widths.

The fully automatic operation of the filters – with an almost total lack of maintenance – allows for considerable savings in comparison to bag filters.

Filtration of wire enamels

Expensive disk filters with a deep-bed filtration effect are frequently used in the production process for wire enamels. Handling the toxic wire enamels when replacing the disks is a problem. Therefore, a leading producer of paints replaced their existing filter solution with a MANN AutoFluid with a very small gap width. Thanks to the continuous filtration offered by the MANN AutoFluid the cost intensive handling encountered during servicing is now a thing of the past.

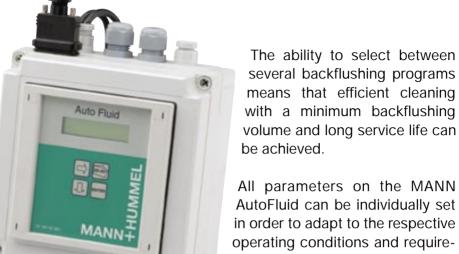
Filtration of elements for household waxes

A large producer of chemicals was using bag filters with a very small filter fineness to filter chemical components for the waxes. Frequent bag changes and difficult handling persuaded the customer to switch over to the MANN AutoFluid after a successful trial period. It was also possible in this application to considerably reduce the running costs, while achieving the same filtration result.

Overview Catalogue Contact Products Quick search for product

Exit

... convincing from the start


Operation and control

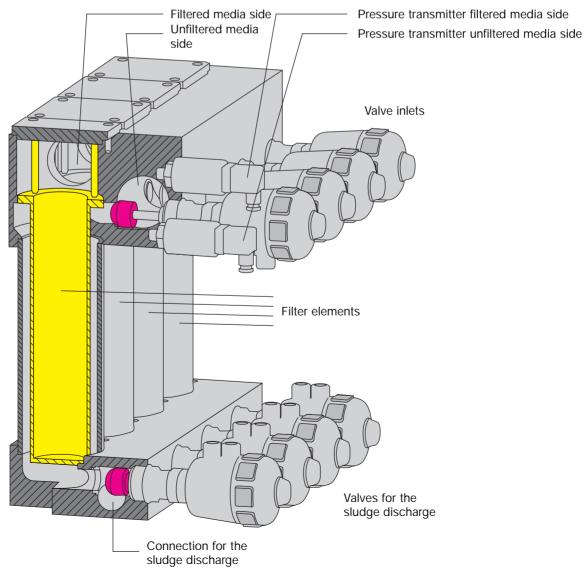
The MANN AutoFluid functions fully automatically.

The micro-processor computerised control specially designed for the MANN AutoFluid can be operated using the 4 key operating panel and the two line LCD in an easy way without any programming knowledge.

The control unit checks the function of the pressure transmitter, monitors the set pressure values and times and creates error messages if critical operating conditi-

ons arise. It thereby protects the devices and machines located downstream in the production line.

All parameters on the MANN AutoFluid can be individually set in order to adapt to the respective operating conditions and requirements regarding the concentration, type, form and density of the dirt and the fractional distribution and viscosity of the medium to be filtered.



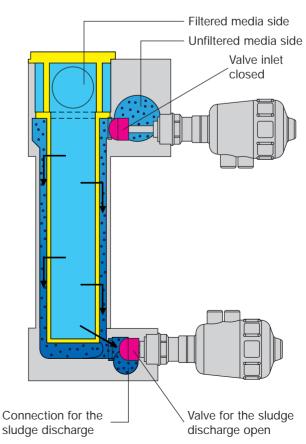
Integration of ...

Design

The MANN AutoFluid is a multi-chamber back-flushing filter with four filter elements which serve to offer ideal backflushing characteristics. Depending on the requirements of the application, the housing is available in aluminium or stainless steel. A control unit specially designed for the AutoFluid monitors the pre-set differential pressure, manages the valves according to the operating parameters and controls the backflushing process which cleans the filter element.



... design and functionality


Filtration

The medium to be cleaned flows in from the unfiltered media side into the housing and flows through the filter elements from the outside to the inside. The coarse dirt particles held back either form a sediment in the lower part of the housing or a deposit on the surface of the filter elements. The cleaned medium flows through to the filtered media side and out of the filter.

Backflushing

The dirt particles filtered out lead to an increase in the differential pressure. When the pre-set differential pressure is reached, all four filter elements are backflushed one after the other without stopping the operation of the whole system. During this cleaning process the inlet in the respective element is closed and the sludge discharge valve is opened. As a result the filter element is cleaned. After the cleaning of the first element has taken place, the other three filter elements are backflushed one after the other. When the backflushing cycle has ended the differential pressure in the filter has returned to its initial value.

Specifications

Gap width	10 μm, 20 μm, 30 μm, 50 μm, 75 μm, 100 μm
	(other gap widths on request)
Volumetric flow	75 m³/h at 0.5 bar initial differential pressure
(Example: water, gap width 30 µm, 25 °C)	100 m ³ /h at 0.85 bar initial differential pressure
Connections	G 3" (unfiltered media side and filtered media side)
	G 1,5" (sludge discharge)
Dimensions in mm	780 x 550 x 440
(Height x Width x Lenght)	
Backflushing	Integrated
Sludge discharge	Integrated
Operating pressure	10 bar
Differential pressure monitoring	Integrated, can be set
Pressure on the unfiltered media side	P1 = 1.5 - 10 bar
Permissible operating temperature	80 °C (120 °C on request)
Materials	Aluminium (coated material on request), stainless steel
Pneumatic connections	G 1/4, 6 ±1 bar
Mains power connection	230/110 V AC 50/60 Hz
Control	Integrated MANN+HUMMEL micro-computer control
Backflushing medium	The medium which is being filtered
Backflushing control	Dependent on time or differential pressure
Version for explosive atmospheres	Optional
Possibility of remote diagnosis, moni-	On request
toring and parameterisation carried out	
by MANN+HUMMEL service technicians	

Excellent Service

Our customers at MANN+HUMMEL find competent contact partners for their filtration requirements. It is not by chance that MANN+HUMMEL has been a world leader for more than six decades in the field of filtration of liquids and air in the most varied of applications and processes. In our international sales and service network our customers find experienced MANN+HUMMEL filter specialists, wherever they are in the world. After a thorough analysis of the application operating conditions we offer our customers a tailor-made filter system. Along with the intensive training for service and

maintenance personnel, we provide a comprehensive range of services:

- On-site installation and commissioning
- · Recycling of AutoFluid filter elements
- Preventative maintenance carried out by service technicians on a service contract basis
- · Service technicians available on call

Talk to us – with MANN+HUMMEL as your filter partner you will make the right choice.

MANN Profluid Automatic backflushing filter

A Filter system for numerous applications

When it comes to the filtration of oils, processing emulsions and suds or the preparation of cooling and process waters, MANN Profluid is the solution. Well-known suppliers of industrial cleaning installations, companies from the chemical and food industries, general machinery as well as tool manufacturers rely on the patented backflushing filter.

Modular filter system

The Profluid system features outstanding performances in many areas, such as

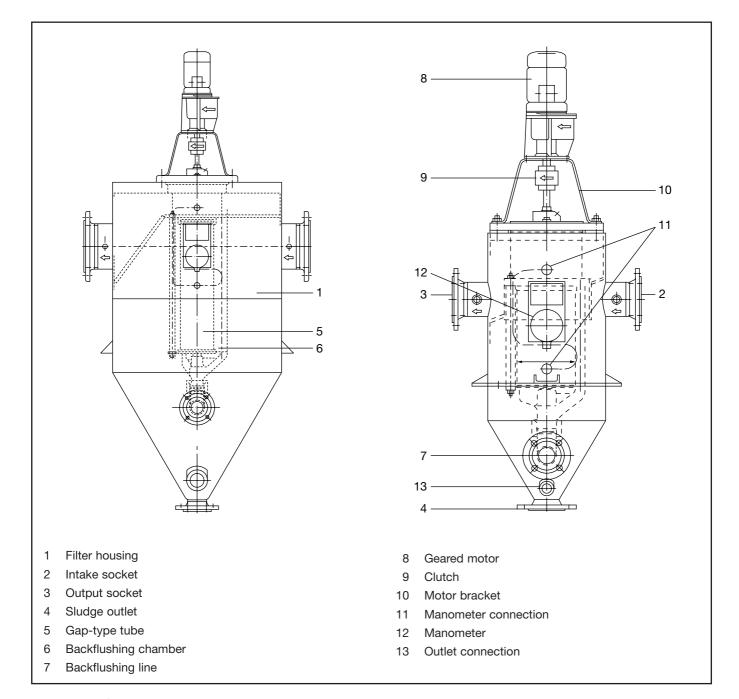
- Filtration fineness
- Nominal flow rate
- Working pressure
- Resistance of the components to various agents and
- Temperature stability.

They can be adapted individually to any application. MANN+HUMMEL's filtration expertise is at your disposal: Consult our engineers to select the system that is best suited to your installation. Please fill out and fax us the form on page 3.

Gap-type tube

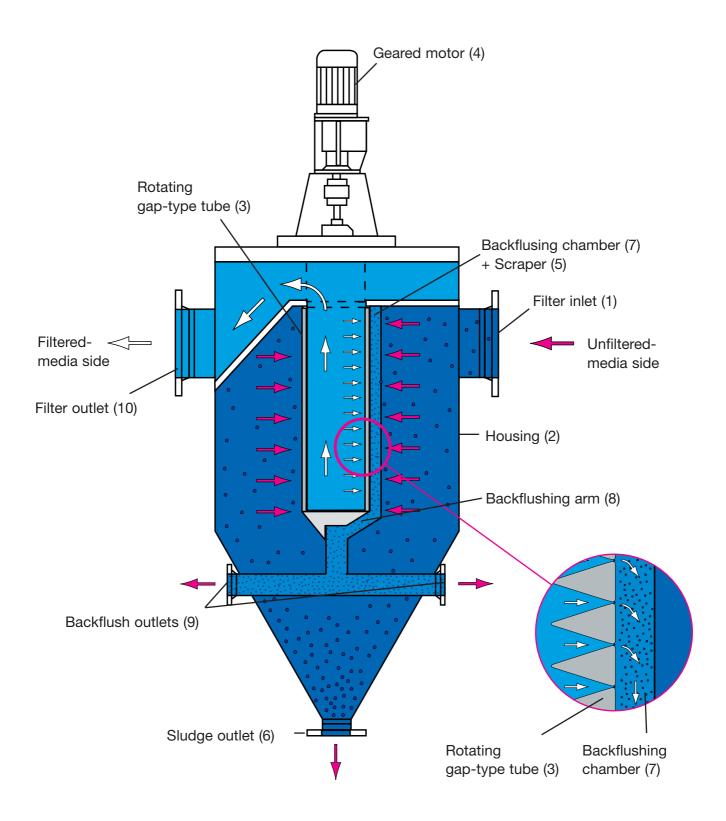
The advantages of MANN Profluid

- Consistent quality level of the parts to be cleaned.
- The agents can be used for a longer period so that operating and disposal costs are reduced.
- The maintenance intervals are increased considerably.
- MANN Profluid has a much simpler design than comparable filters with multi-chamber systems.
- Effective backflushing with a low backflush
- Impurities collected in the filter are removed at individually adjustable intervals without interrupting the process.
- Reliable and continuous operation even with very different dirt particles.


Automatic backflushing filter

Dirt scraping and simultaneous backflushing

Design


The Profluid backflushing system consists of a housing, a filter element, electro-pneumatic ball valves and a controller. The filter element is a gap-type tube. The agent to be cleaned flows through it, from the outside to the inside. Impurities larger than the gaps are filtered out

and either sink to the housing bottom or, form a filter cake that is removed by the scraper plate through the rotation of the filter element. The scraping of the gap-type tube can occur during operation, triggered by differential pressure or time control.

Cleaning and backflushing ...

Mode of operation

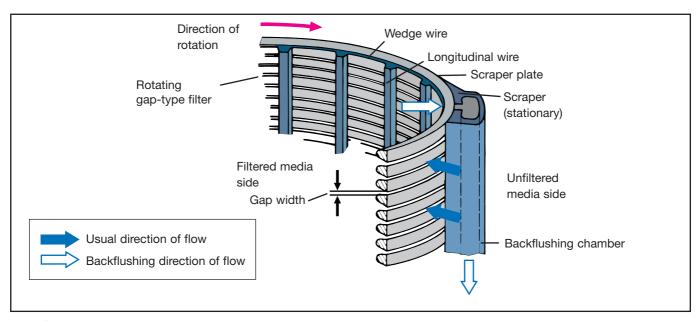
... without interrupting the operation

Cleaning

The medium to be cleaned flows into the housing (2) via the filter inlet (1) and passes through the gap-type tube (3) from the outside to the inside. All impurities in the medium which are larger than the gap width are retained on the surface of the tube. The coarse dirt particles either sink to the lower part of the housing or form a filter cake on the exterior surface of the tube.

Dirt scraping

Driven by a geared motor (4), the gap-type tube rotates along a stationary scraper plate (5) that removes the filter cake. It then sinks to the bottom of the housing and is discharged when necessary via the sludge outlet (6). To simplify the disposal of the solid particles filtered out, a drying valve can be installed.


Backflushing (cleaning the gaps of the filter element)

Particles from a certain size up cannot be removed by the scraper. On conventional gap-type tube filters, they deposit in the gaps and - under certain operation conditions - quickly clog the filter.

Near size particles can be eliminated from the gap type tube through the use of a backflushing chamber (7). The whole length of the tube is flushed: When the backflushing line is opened, the medium flows into the unpressurized backflushing chamber in opposite direction to normal, and is drained towards the outside. The backflushing procedure is submitted to specific parameters, such as operation hours, time pulse and increase of the differential pressure.

Operating pressure and set backflush volume influence decisively the efficiency of backflushing.

The combined action of dirt scraping and backflushing, a patented procedure, ensure quality cleaning without interrupting the production.

Technical data and maintenance

Depending on the nominal flow rate, the gap width and the media contamination, Profluid can be supplied as single or up to quadruple filter. Profluid backflushing systems can be installed in series or in parallel. All types are provided with a removable element. Geared motors with 230/400 V, 50/60 Hz and IP 56/65 protection are standard supply. Other voltages, frequencies and protections are available upon request.

Maintenance

Maintenance work on our filter systems should be performed by our technical service personnel or by service engineers from your company that have been trained by us.

Please ask for details.

Call us at +49 (62 32) 319 – 483 or send a fax to +49 (62 32) 319 – 370

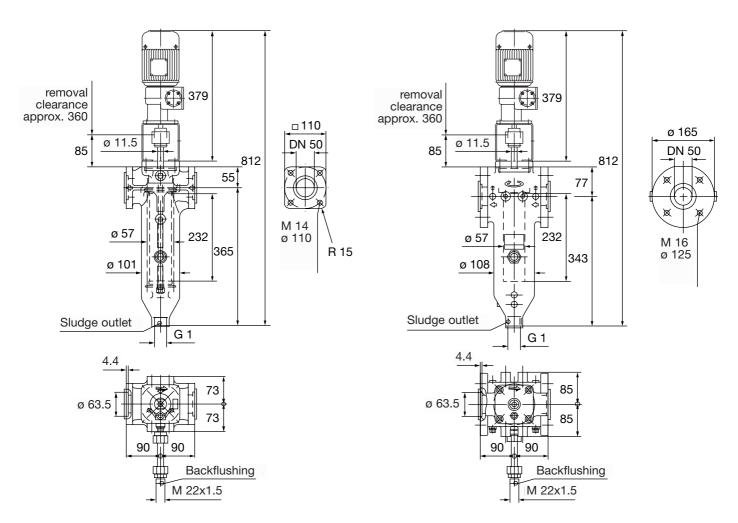
Technical data

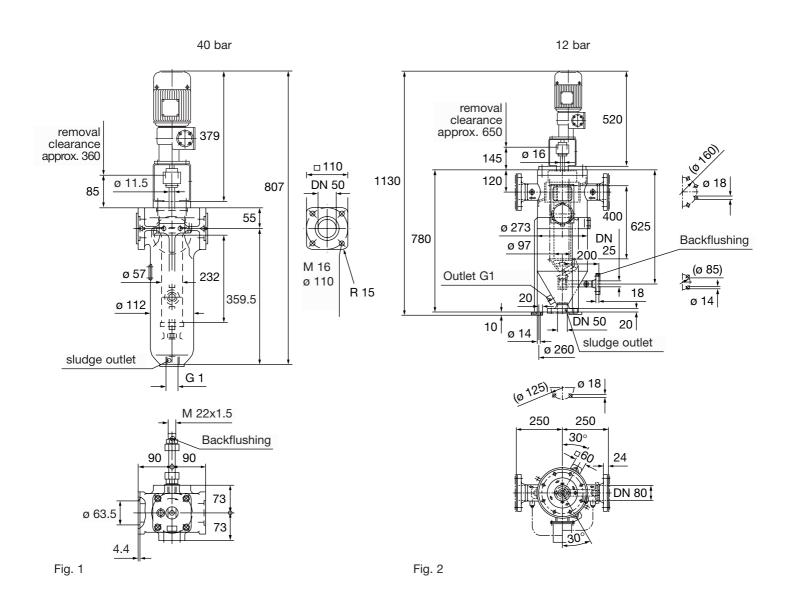
Gap width:	30 to 200 μm
Nominal flow rate:	up to 800 m³/h
Connections:	DN 50 to DN 300
Backflushing:	integrated
Backflushing volume:	5-10% of nominal flow rate
Sludge outlet:	integrated
Working pressure:	10 to 40 bar (1.0 to 4.0 MPa)
Differential pressure control:	integrated
Permissible operation temperature:	up to 200 °C
Materials:	Aluminium, nodular graphite iron, steel, stainless steel
Cleaning:	by control pulses, electrical drive
Control:	available optionally
Applications:	cleaning of all type of low-viscosity media

Nominal pressure up to 40 bar (4.0 MPa)

Filter with removable inlet and geared motor (230/400 V, 50/60 Hz, enclosure IP 54/65). Moduls with other voltage, frequency and enclosure upon request.

Please send us the questionnaire on page 3, we would like to help you determining the right filter system.




Fig. 1 Fig. 2

		0.030 mm	.030 mm 0.050 mm 0.075 mm 0.100 mm 0.150 mm 0.200 mm						Weight
		x = 0	x = 1	x = 2	x = 3	x = 4	x = 5	Material	approx.
Part No.	Fig.		Ν		Housing	[kg]			
54 524 8x 262	2	2.5	4	7	10	13	15	Al nickled	16
54 524 7x 263	1	2.5	4	7	10	13	15	GGG-40	24
54 524 7x 264	2	2.5	2.5 4 7 10 13 15					Al	16

¹⁾ e flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δp) of 0.4 bar.

Nominal pressure up to 12/40 bar (1.2/4.0 MPa)

Please send us the questionnaire on page 3, we would like to help you determining the right filter system.

Part No.	Fig.	0.030 mm x = 0	Gap width 0.030 mm 0.050 mm 0.075 mm 0.100 mm 0.150 mm 0.200 mm $x = 0$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ Nominal flow rate ¹⁾ [m ³ /h]						Weight approx. [kg]
54 524 8x 265	1	2.5	4	7	10	13	15	1.4581	28
54 740 8x 175	2	15	20	25	30	40	45	1.4571	102

¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δp) of 0.4 bar.

Nominal pressure up to 12 bar (1.2 MPa)

Filter with removable inlet and geared motor (230/400 V, 50/60 Hz, enclosure IP 54/65). Moduls with other voltage, frequency and enclosure upon request.

Especially when using high gap widths inlets without backflushing can be installed. Other gap widths, welded, corrosion- and acid-resistant filters are available upon request.

removal clearance approx. 650 145 DN 80 95 305 400 620 770 ø 97 G 1 Backflushing DN 50 sludge outlet 360 ø 270 175

Fig. 1

Please send us the questionnaire on page 3, we would like to help you determining the right filter system.

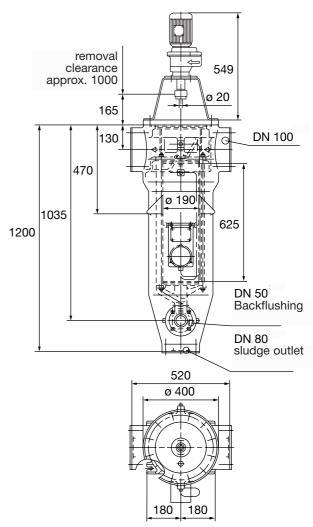
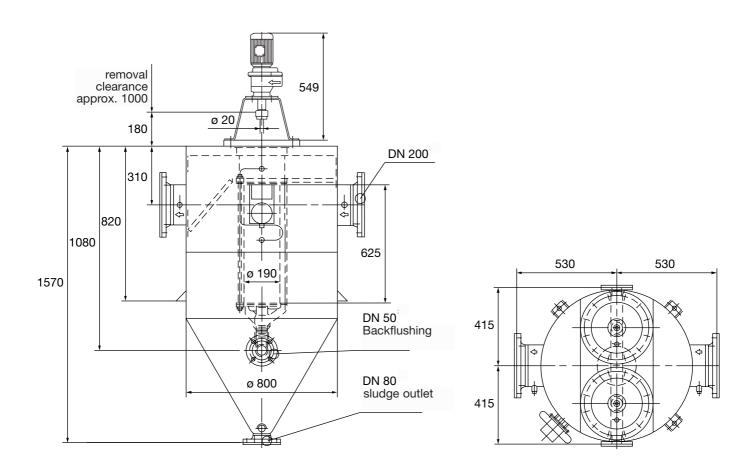


Fig. 2

		0.030 mm	0.050 mm		Weight				
		x = 0	x = 0						approx.
Part. No.	Fig.		١	Nominal flow		Housing	[kg]		
54 740 8x 162	1	15	20	25	30	40	45	Al nickled	100
54 740 8x 164	1	15	20	25	30	40	45	Al	100
54 964 8x 382	2	50	70	80	100	100	100	Al nickled	180
54 964 8x 384	2	50	70	80	100	100	100	Al	180


¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δp) of 0.4 bar.

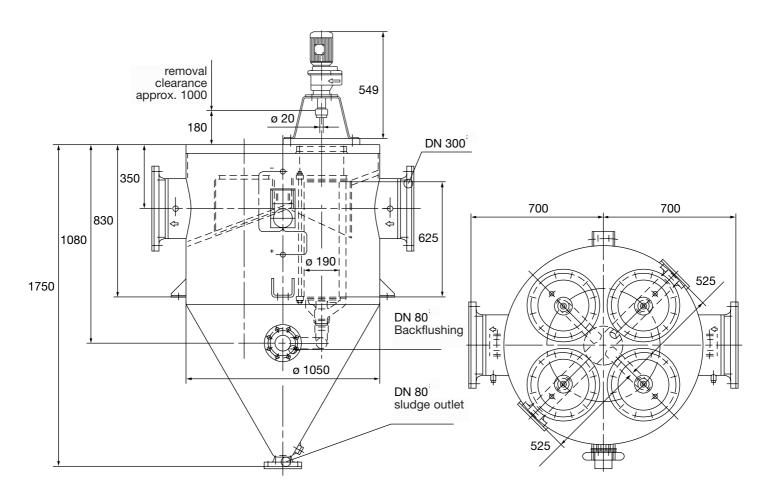
Nominal pressure up to 10 bar (1.0 MPa)

Double filter with removable inlets and geared motors (230/400 V, 50/60 Hz, enclosure IP 54/65). Moduls with other voltage, frequency and enclosure upon request.

Especially when using high gap widths inlets without backflushing can be installed. Other gap widths, welded, corrosion- and acid-resistant filters are available upon request.

Please send us the questionnaire on page 3, we would like to help you determining the right filter system.

			Gap width			Weight	
	0.050 mm	0.075 mm	0.100 mm	0.150 mm	0.200 mm	Material	approx.
Part No.		Nomin	al flow rate	¹⁾ [m³/h]	Housing	[kg]	
95 499 28	150	180	200	220	250	St	700


¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δ p) of 0.4 bar.

Nominal pressure up to 10 bar (1.0 MPa)

Quadruple filter with removable inlets and geared motors (230/400 V, 50/60 Hz, enclosure IP 54/65). Moduls with other voltage, frequency and enclosure upon request.

Especially when using high gap widths inlets without backflushing can be installed. Other gap widths, welded, corrosion- and acid-resistant filters are available upon request.

Please send us the questionnaire on page 3, we would like to help you determining the right filter system.

Part No.	0.050 mm		Gap width 0.100 mm al flow rate	0.150 mm	0.200 mm	Material Housing	Weight approx. [kg]
95 499 48	300	360	400	440	500	St	1 500

¹⁾ The flow rates indicated apply to liquids with a viscosity of 72 mm²/s (cSt) given a flow resistance (Δ p) of 0.4 bar.

Overview Catalogue Contact Products Quick search for product

Filters for liquids for a multitude of industrial applications

Modern high performance vehicles, machines, aggregates and engines call for efficient filters and components. In the present catalogue you can take a look through our range of filters.

Our customers use MANN filters for a variety of industrial applications, e.g.:

- Machines for the construction industry
- EDM, electrical discharge machining
- Compressors
- Agricultural machinery
- Construction equipment
- Engine construction
- The construction of commercial vehicles and vehicles designed for special purposes, etc.

Therefore, it is quite usual for MANN+HUMMEL to develop special customised solutions.

Contact in your area

Production sites and sales offices in a number of European locations as well as in Asia, the USA, and South America enable on-site clarification of all technical questions. And also one of our representatives is sure to be located near you so that we are always within reach.

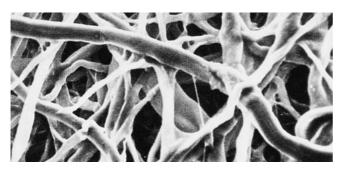
Overview Catalogue Contact Products Quick search for product ✓ ► Exit

Quality does not happen by chance

To be able to guarantee a consistently high quality in production, we check the following properties of our filter elements according to prescribed standards:

- Maximum permissible differential pressure (collapse or burst strength) to DIN ISO 2941
- Acceptable product quality (absence of leaks in bubble test) to DIN ISO 2942
- Compatibility with working fluids (storage)
 to DIN ISO 2943

- Test on end discs (pressure test) to DIN ISO 3723
- Fatigue strength confining flow (pulsation testing) to DIN ISO 3724
- Flow resistance (pessure loss - volume flow characteristics) to ISO 3968
- Extraction efficiency and service life (multipass procedure) to ISO 4572

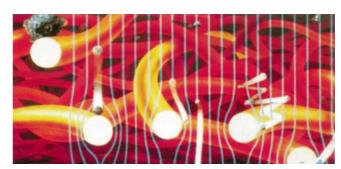


Reliable filtration ...

MANN filters for liquids perform a function which, through often unnoticed, is in fact indispensable. They keep away damaging impurities from engines and aggregates and prevent early engine wear. The basic material for the fine filter medium in the MANN filter elements is the special technically prepared paper which has an exactly defined composition. Special applications also use other mediums such as, for example, synthetic fabric.

Filter paper

MANN+HUMMEL only uses special technically prepared paper which has to fulfil the highest quality requirements in the stages of production, processing, and finally the installation. The structure of the fibres and pores as well as the filter fineness are exactly defined. With these filter papers only 10% of the paper volume is actually made of fibres. The remaining 90% consist of many equally large in-between spaces (paper pores), which guarantee a high degree of dirt separation and a high dirt holding capacity, and therefore a long service life.



Filter paper under the microscope

Such filter papers are able to hold back particles far smaller than 1 micron (1/1000 mm). Due to the structure of the paper, which has a broken up inflow side surface and a smooth surface on the outflow side, dirt holding capacity is increased and also the amount of filter surface area available in the filter element is larger.

The basic material we get from our supplier only becomes highly effective filter paper after a

special processing treatment based on MANN+HUMMEL know-how.

Graphic representation of a cross-section of a filter paper

Impregnating

In order to ensure sufficient stability against mechanical, thermal and climatic influences and resistance to fuels, nearly all our filter papers are impregnated. Modern synthetic resins in a soluble state perfusc - either as an aqueous, alcohol based or acetone solution - the filter paper. The resins cover the fibres of the filter papers and »knot« them together at the crossing points. Using a specific heat treatment condensation of the resins is achieved and thereby the final characteristics of the paper. It is important that impregnated and thermally hardened papers do not change their critical characteristics - volume of pores, size of pores, and structure of fibres - in relation to their basic structure. The main task of impregnation is to increase the stability of the filter paper for its use in the field.

Geometry of the pleats

Even before the impregnated paper finally stiffens during hardening, it is formed and pleated. The fact that before hardening impregnated filter paper acts thermoplastically at temperatures between 20 and 100 °C, i.e. the outside form can be created easily and this form remains after hardening. In order to guarantee the effictiveness of the whole filter paper surface and to increase the service life under the mechanical influences of the engine operation caused by

... thanks to high quality filtering media

pulsation and vibrations, raised parts acting as special distance holders are pressed into the paper. Also serving as distance holders are socalled creases, whereby one paper pleat is folded all the way along.

The combination of the distance holder and optimised pleat geometry make it possible to achieve a large filter surface within a relatively small space. The filter elements can be adapted to almost any housing design giving flexibility. Since there is no possibility of "packeting" of the filter pleats (i.e. when the pleats are pressed together), all the filter surface is active.

Advantages of the special paper

- Consistent pore distribution guarantees high dirt separation at low pressure resistance levels
- Reliable function during the whole operation time
- Damaging dirt particles with dimensions of a few thousandths of a millimetre are reliably filtered
- Unimpaired function at high temperatures
- Highly developed pleat geometry allows large filter surface areas in small spaces
- Long service intervals thanks to large dirt holding capacity
- Raised surfaces and creases make the filter fully effective
- Operational reliability even in extreme conditions
- Not sensitive to mechanical, climatic or thermal influences

Highest quality for your safety

The development and production of suitable filter mediums is of the greatest importance for a product with high quality standards. Therefore the way leading up to series production is long, hard, dusty, and at times icy. Many trials, tests and studies have to convince us that a filter is reliable and will fulfil its task. All materials and product developments are thoroughly tested in modern test benches in our laboratories.

On top of the tests carried out in laboratories and in measuring and testing rooms, we also test our products at the site where the future application will take place. Ambient temperatures with either extreme coldness or extreme heat may be found where our customers use the aggregates and are natural test conditions. On-site testing with permanent field checking together with research work contributes indispensably towards an optimum product design. And this means you can always depend on filters which have our brand name!

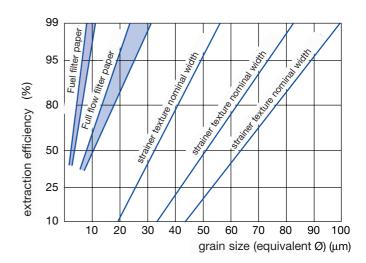
Configuring the size ...

The main job of a filter for liquids is to protect lube oil, hydraulic and cooling systems from wear. But filters used in industrial processes increasingly contribute to the fulfillment of environmental regulations, for example the MANN Profluid, used for the preparation of cooling lubricants.

The criteria to be considered when selecting a filter for liquids are the following:

- Flow rate
- Viscosity
- · Type and quantity of dirt
- Filter fineness
- Operating temperature
- · Operating pressure
- Expected service life
- Permissible differential pressure
- Operating and maintenance conditions on site

Simply fill out and send us the form on page 3. We would like to help you find the right filter configuration.

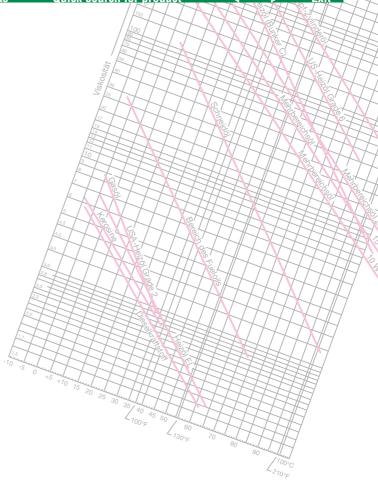

Service life

The service life can be defined as the time during which the filter is in operation before a given increase in air-flow resistance occurs, as a result of the dirt deposit on the filter. When the permissible differential pressure is reached, maintenance is necessary. The connection between pressure increase and dirt-retaining capacity is usually not known in practice, since it depends on the type of dirt and the specific operating conditions. Ask our sales engineers for more information. Characteristic is the progressive increase in differential pressure over the duration of operation. Larger filtering surface and a more coarse filter element prolong service life considerably.

Bearing in mind the strong economical impact of filter service life, MANN+HUMMEL recommends to give preference to a filter only as fine as necessary. Required filter fineness and achievable service life are experimental values determined during practice. Many factors can influence them and this is the reason why a theoretical predetermination is only partly possible.

Filter fineness (extraction efficiency)

The filter media and the resulting filter fineness depend either on the size of the particles that pass through the filter or extraction probability for the various particle sizes.

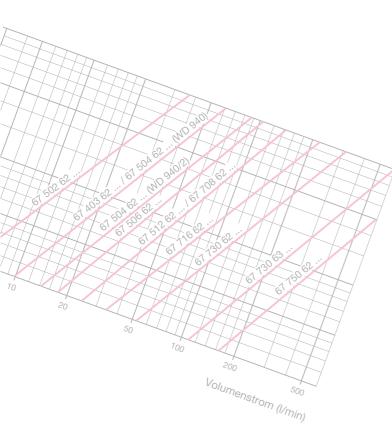

... of filters for liquids

Flow rate and flow resistance

Generally, the flow resistance in pipe systems provided with filters can be determined only approximately, because of their varying cross sections. As more dirt is retained by the filter, the flow resistance increases.

To be able to make comparable statements when viscosity data is not available, mineral oil with a kinematic viscosity of 72 mm²/s is used as a point of reference. For the volume flow indicated in the tables, the resulting flow resistance (differential pressure) is of about 0.2 bar (20 KPa), provided that no details have been provided.

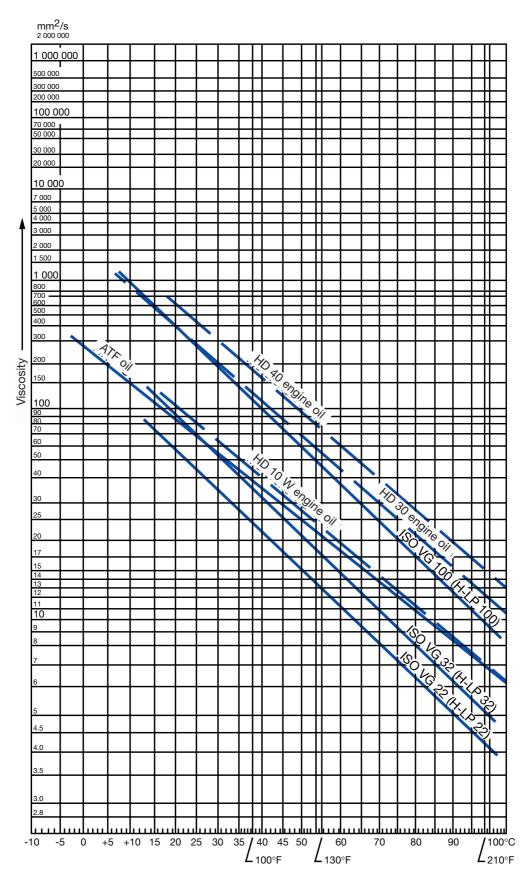
In the filter element the flow patters run mainly in the laminar zone, i.e. volume flow, resp. flow resistance change exponentially in relation to the kinematic viscosity.



If the filter housing is taken into consideration, a turbulent flow or a mixed flow can occur. In the turbulent area, the flow resistance is largely proportional to the square of the velocity and the viscosity plays a subordinate role.

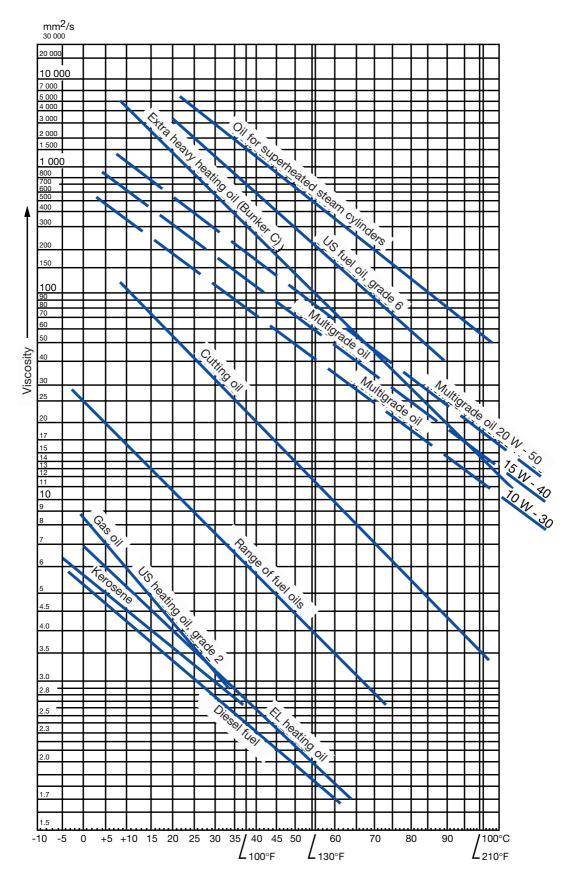
Nominal flow rate

The nominal flow rate of a filter for liquids is closely connected with the geometrical filter calculation data (connection nominal diameter, filter fineness) and the physical properties of the liquid to be filtered (viscosity, spissitude). As a rule, the pump capacity determines the required nominal flow rate of the filter. You will find the nominal flow rate of MANN filters in the respective charts.


Configuration support from our engineers Our engineers would like to assist you in determining the filter required for your application. Just fill out and fax us the form on page 3.

Viscosity/temperature chart

Examples of commercial, single-grade engine oils, hydraulic and ATF oils


(Characteristic curves for motor oils are shown in broken lines for ease of identification.)

Viscosity/temperature chart

Examples of commercial, multi-grade engine oils, cutting and heating oils

(Characteristic curves for motor oils are shown in broken lines for ease of identification.)

Glossary

Definition of expressions used in filter engineering

Backflushing filter – Filter where cleaning is achieved without taking out the filter element by reversing the flow direction.

Burst pressure [bar, KPa] – Smallest differential pressure which can cause damage to the filter or a filter component due to the pressure load.

Differential pressure [bar, mbar, KPa] – Flow resistance is one of the causes of differential pressure. By definition it is the difference in pressure between two measured points, e.g. the crude side and the clean side of the filter.

Dirt capacity [g] – Dirt capacity of a filter or filter element is established under laboratory conditions and is the mass of the dirt added to the filter up to the defined end of the test.

Dirt load – Quantity of dirt the filter is designed to handle.

Extraction efficiency [%] – Relationship between the dirt extracted in the filter and the dirt going into the filter.

Filter fineness – General term describing the pore size, gap and mesh width, etc.

Filter medium – Material used to carry out the filtration.

Flow resistance [bar, mbar, KPa] – Resistance in the filter working against the flow of the medium to be filtered.

Fractional extraction efficiency [%] – extraction efficiency for a particular particle size.

Gap-type filter – Filter which extracts impurities using a filter element with a defined gap width, e.g. through layered plates or discs, or wound wires.

In-line filter – For filter installation in pipes or hoses.

Medium – (see Filter medium)

Micro-top – MANN+HUMMEL brand name for filter elements.

Nominal flow rate [l/min., m³/h] - a defined → volume flow.

Nominal pressure [bar, mbar, KPa] - Pressure which the filter is designed to operate with. This information can be included in the filter description.

Opening pressure [bar, KPa] - Differential pressure when opening the bypass valve, characterised by a defined → volume flow.

Pressure loss [bar, mbar, KPa] - Persistent loss in pressure resulting from a reduction of the flow energy caused by the filter or the filter element.

Profluid - MANN+HUMMEL brand name for an automatic → backflushing filter.

Spin-on filter - Filter which is removed with its filter element in one piece during service and replaced.

Viscosity - Dynamic viscosity is a measure of the resistance of the medium to be filtered. Kinematic viscosity is the relationship between the dynamic viscosity of the medium to its density.

Volume flow [I/min., m³/h] - Volume which flows through a filter in a time unit.

Conversion factors

Temperature

°F	=	(°C x 9/5) + 32
°C	=	(°F – 32) x 5/9

Flow rates

Power

HP KW	=	KW	Х	1.341
KW	=	HP	Χ	0.746

1 litre/min	=	0.0353	cfm
1 m³/min	=	35.3140	cfm
1 m³/h	=	0.5886	cfm
1 Engl. gallon/min	=	0.1605	cfm

Length

1	m	=	1000 mm	=	39.38	inch	=	3.281	ft.
1	inch	=	25.4 mm	=	0.0254	m	=	0.08333	ft.
1	ft.	=	304.8 mm	=	0.3048	m	=	12	inch

Volume

1	m³	=	1000 li	tres	=	35.31	ft.3	=	61020	inch³
1	ft. ³	=	28.32 li	tres	=	0.02832	m^3	=	1728	inch³
1	litre	=	0.2642 L	JS gallon	=	0.2201	Engl.	gallon		
1	US gallon	=	3.785 li	tres	=	231	inch ³			
1	Engl. gallon	=	4.544 li	tres	=	277	inch ³			

Weight

1	kg	=	2.205	lb	=	35.27	Oz
1	lb	=	0.4536	kg	=	16	Oz
1	Oz	=	0.02835	kg	=	0.0625	lb

Pressure

1	bar	=	100	KPa	=	14,5	psi	=	401.5	IN. H ₂ O
10	mbar	=	1	KPa	=	0.145	psi	=	4.015	IN. H ₂ O
10	psi	=	68.95	KPa	=	0.6895	bar	=	27.68	IN. H ₂ O
1	IN. H ₂ O	=	0.2491	KPa	=	2.491	mbar	=	0.03613	psi